Energy Efficiency in the U.S. Energy Outlook

MIT-NESCAUM Endicott House August 25, 2010 Boston, MA

Richard Newell, Administrator

Overview

- The U.S. Energy Outlook
- Vehicle fuel economy in the Energy Outlook
- Residential and commercial energy efficiency in the Energy Outlook
- Concluding remarks

Global energy consumption grows 49% and non-OECD countries account for 86% of the increase through 2035

energy consumption quadrillion Btu

The U.S. Energy Outlook

Richard G. Newell, MIT-NESCAUM, 8/25/2010

Non-fossil U.S. energy use grows rapidly, but fossil fuels still provide 78 percent of total energy use in 2035

Source: Annual Energy Outlook 2010; analysis of Kerry-Lieberman American Power Act of 2010 (KL)

Assuming no new policies, growth in U.S. energy-related CO2 is driven by electricity and transportation fuel use

Key concepts

- Energy efficiency
 - energy services provided per unit of energy consumption (e.g., MPG)
 - driven by technology improvements
- Energy intensity of the economy
 - primary energy consumption per unit of real GDP
 - inverse of efficiency, applied at the economy-wide level
 - efficiency + structural changes
- Carbon intensity of the economy
 - carbon emissions per unit of real GDP
 - efficiency + structural changes + decarbonization

U.S. energy and CO2 per dollar GDP continue to decline; per capita energy use also declines

Examples of structural changes

- Buildings
 - migration to moderate climates
 - housing type shifts / commercial building mix
- Industry
 - shifts to less energy-intensive industries
 - growth of service sector relative to industry
- Transportation
 - vehicle type shifts (cars, mini-vans, SUVs, and light trucks)
 - urbanization, shifts to mass transit, biking / walking
- Other changes in the demand for energy services
 - e.g., due to energy price changes

Structural drivers grow slower than GDP, thereby lowering energy intensity

Ave	rage annual growth rate 2008 – 2035
Macroeconomic	5 5
Real Gross Domestic Prod	uct 2.4%
Population	0.9%
NEMS Sectoral Drivers	
Buildings	
Households	1.0%
Commercial Floorspace	1.3%
Industrial (Real Value Shipment	S)
Non-Manufacuring	0.9%
Energy Intensive Manufact	uring 0.8%
Non-Energy Intensive Man	ufacturing 1.8%
Transportation	
Light Duty Vehicle-Miles Tr	aveled 1.7%
Freight Truck Vehicle-Miles	Traveled 1.7%
Air Seat Miles	1.3%
Rail Ton-Miles	0.8%

Energy consumption would be 16% higher in 2035 without efficiency improvements; and 68% higher without structural change as well

quadrillion Btu

Key drivers of energy efficiency changes in EIA analysis

• Market drivers

- energy prices
- technology costs and innovation
- consumer and investor behavior
- technology diffusion and stock turnover
- Government standards
 - vehicle fuel economy
 - appliance efficiency and building standards

• Government financial incentives

- tax credits
- funding in the Recovery Act
- Prospective policy analyses (e.g., H.R. 2454, APA)
 - greenhouse gas cap-and-trade
 - combined efficiency and renewable electricity standard

Extended policies case illustrates the impact of continued efficiency standard increases under existing laws

Vehicle fuel economy in the U.S. Energy Outlook

Richard G. Newell, MIT-NESCAUM, 8/25/2010

New light duty vehicle efficiency reaches 40 mpg by 2035

The continuation of existing policies into the future would increase light-duty vehicle fuel economy

Alternative vehicle technologies meet half of light-duty vehicle sales in 2035

Market penetration of new technologies for light-duty vehicles, 2008 and 2035

Richard G. Newell, MIT-NESCAUM, 8/25/2010

18

Residential and commercial energy efficiency in the U.S. Energy Outlook

Richard G. Newell, MIT-NESCAUM, 8/25/2010

Growth in electricity use continues to slow

20

Alternative building energy efficiency cases

- Low technology case
 - equipment and shells limited to what was available in 2009
 - no technology advance, but equipment stocks improve through turnover
- Reference case
 - future technology improvements
 - equipment purchases calibrated to observed behavior
- High technology case
 - advanced equipment available earlier at lower cost
 - building shells get more efficient than Reference case
 - purchases based on reduced discount rates
- Best technology case
 - equipment costs ignored; only the most efficient technologies allowed
 - shells even better than High technology case

But buildings growth and new residential uses could more than offset efficiency improvements

Change in residential electricity consumption in the Reference case, 2008-2035

Stock turnover and new technology will drive down building energy use per square foot

-45%

Percent reduction of 2009 value in 2035

Growth in residential electricity sales is substantially cut by extending policies for: cooling, hot water, and refrigeration

Concluding remarks

- Market uptake tends to be considerably less efficient than best available technology
 - market behavior and slow stock turnover tends to moderate the impact of new innovations
- Analysis cases illustrate a range of possible future energy consumption paths depending on how energy markets, technologies, and policies unfold
- Tracking and understanding energy consumption, technology, and efficiency trends is a critical component of EIA's work
 - ongoing policy interest has increased the need for quality data and analysis

For more information

U.S. Energy Information Administration home page

Short-Term Energy Outlook

www.eia.gov/emeu/steo/pub/contents.html

Annual Energy Outlook

International Energy Outlook

www.eia.gov/oiaf/aeo/index.html

www.eia.gov

www.eia.gov/oiaf/ieo/index.html

Monthly Energy Review

www.eia.gov/emeu/mer/contents.html

National Energy Information Center (202) 586-8800 Live expert from 9:00 AM – 5:00 p.m. EST Monday – Friday (excluding Federal holidays) email: InfoCtr@eia.doe.gov

