Improving the Fuel Economy of Heavy Duty Fleets II
San Diego, CA
February 20th, 2008

Heavy Duty Truck Fuel Economy Options
Southwest Research Institute
David Branyon
Outline

- Background/history
- Current project objectives
- Project approach
- Technology examples
- Technology packages
- Summary
Diesel engine efficiency gradually improved from the early 1900s to the 1970s, when emissions became a focus of engine development.

Early emissions reductions came with efficiency improvements.

Latest emissions reductions resulting in efficiency losses.
Background/History

- Non-vertically integrated HD truck industry
 - Vehicle advances delayed somewhat from engine development
- Vehicle development traditionally directed towards comfort/convenience more than fuel economy
- Fleet vs. owner/operator trends
 - Fleets lead fuel economy developments in trucks
- Vehicle technology for improved fuel economy is available but not highly desired in the market
 - Fuel prices have large impact on desire
Current Project Objectives

- With the near-term 2010 emissions objectives within reach, what can be done to improve HD truck fuel economy while maintaining extremely low tailpipe emissions?
- Determine the most feasible and cost-effective technologies for improvement of real-world fuel economy on the over-the-road HD truck fleet.
- Quantify the potential magnitude of improvement that can be obtained with respect to initial cost and other market drivers.
Project Approach

- Select a baseline HD truck/engine combination to serve as reference
 - Kenworth T600
 - Volvo D13
 - 10 speed transmission
- Consider and select a number of potential fuel economy improving technologies for both engine and vehicle
- Build these technologies into a limited number of technology packages for evaluation
- Build engine and vehicle computer models of the baseline
- Analyze the technology packages with the models
Project Approach - Models

- **GT-Power** will be used for engine modeling
 - 1-D cycle simulation code
 - Calculates every pressure, temperature and mass flow rate through the system at every time step, typically $\frac{1}{4}$ to $\frac{1}{2}$ crank degree
 - Includes everything from air filter to tailpipe
 - Manifolding
 - Turbomachinery
 - Valve events
 - EGR loops
 - Aftercooler
 - Heat release (combustion) and in-cylinder heat loss
- Will be used to generate fuel consumption maps for the engine with various engine technology packages applied
Project Approach - Models
Project Approach - Models

- The engine model provides the most accurate results when baselined to the closest available engine data.

- SwRI is conducting a HD engine benchmarking program from which we are able to utilize results for baseline calibration of the engine model to a 2007MY configuration.

- After baseline matching, the model will be adjusted to provide expected 2012 emissions solution and relevant engine performance characteristics.

- Of the appropriate engines, this data is first available for the Volvo D13 so that is the engine that will be modeled and used for the study.
 - This engine not actually available in the selected truck commercially, but representative of the general class of engines that are available.

- This closely-related baseline of very new data provides the best accuracy of the model predicting forward.
Project Approach - Models

- Raptor® will be used for vehicle modeling
 - Simulates any definable drive cycle
 - Uses engine performance maps (derived from GT-Power), and takes into account
 - Rolling resistance
 - Aerodynamic drag
 - Grade
 - Powertrain losses
 - Hybridization
 - Produces predictions for vehicle fuel consumption and emissions over defined drive cycle
Project Approach – Drive Cycle

- Drive cycle selection is critical parameter in driving best real-world improvements
- Modification of CA HDD Highway Line Haul Drive Cycle
- Increased speed by 8%
- Additional segments at high speed

![Graph showing speed vs. time]
Technology Examples
(with fuel consumption reduction estimates)

- **Engine technologies**
 - Engine friction reduction (1%)
 - Controls refinements (1%)
 - Improved air handling
 - Turbocompound (-1 to +4%)
 - 2-stage with intercooling (0 to 2%)
 - High efficiency turbocharging (0 to 2%)
 - EGR pump (0 to 2%)
 - Variable valve actuation (1 to 4%)
 - Alt. combustion strategies (0 to 2%)
 - HCCI/PCCI
 - LTC
 - Thermal management
 - Insulated ports/manifolds (0 to 1%)
 - Bottoming cycle (10-40%)
Technology Examples
(with fuel consumption reduction estimates)

- **Vehicle technologies**
 - Drivetrain
 - CVT (0%)
 - Automated manual (4 to 5%)
 - Hybridization (3 to 15%)
 - Accessory electrification (1 to 2% per accessory)

- **Efficiency**
 - Lubricants, parasitic drag (up to 2%)
 - Aerodynamic drag (up to 5%)
 - Mass reduction (up to 4%)
 - Rolling resistance (2 to 3%)
 - Other
 - Routing, increased GVW, etc. (up to 10%)
Technology Ranking

- In order to reach a manageable number of combinations to model, technologies were ranked
- Full group discussion with input from steering committee

Considerations

- Potential fuel economy gains (estimated)
 - Fuel economy gains obtainable in key operating areas
- Initial cost
- Packaging
- Adverse effects on drivability, ability to complete mission
- Avoid including very similar technologies to allow inclusion of wider variety of approaches
Technology Packages

- After the individual technologies are selected, they are grouped into technology packages.
- Scope of project allows ~8 packages to be modeled and quantified.
- Look for synergies between engine and vehicle technologies.
- Try to provide a few different, internally consistent packages:
 - Lower initial cost, more conservative effort on both engine and vehicle side.
 - Higher initial cost, more aggressive effort on both engine and vehicle side.
 - Infrastructure considerations.
Technology Packages

- Example package (moderate) to show synergies and other considerations

- Vehicle improvements
 - Moderate aero package
 - Reduced rolling resistance (super single tires)
 - Reduced drag (lubricants, brakes, bearings)
 - Electrified accessories (limited to 24VDC-capable items)

- Engine Improvements
 - Turbocompound
 - Exhaust port liners
 - High efficiency turbo
Technology Packages

- Synergies/rationale for moderate package selection
 - Turbocompound with high efficiency turbo provides maximum turbocharger performance and power reclamation while still providing negative delta P required for EGR flow
 - Exhaust port liners maximize heat to turbines that can now be captured via turbocompound
 - Turbocompound could be electric and provide energy to drive accessories
 - All pieces of package are available technology that have been applied in limited fashion to production engines/vehicles
 - Common risk/initial cost level across engine and vehicle
 - Other packages are higher or lower risk, but attempt to be consistent risk level within a given package
Technology Packages

- **Final package will be “best of”**
 - Will include learning from evaluation of other packages and intended to be a very aggressive grouping of technologies that provide a large magnitude benefit

- **Likely technologies:**
 - Variable valve timing
 - Bottoming cycle
 - Exhaust port liners
 - Electrified accessories
 - Full aero package
 - Low rolling resistance
 - ...

- **Objective is to determine best achievable performance**
Status

- Initial engine data from benchmarking program available mid-February for D13
- Engine and vehicle model construction in process
- Cost estimating in process
- Maintain communication with industry and steering committee throughout to insure that the correct effects and magnitudes are captured
Next Steps

- Baseline engine model against 2007MY data
- Adjust to 2012MY performance for project baseline
- Apply technology packages and generate fuel consumption, emissions maps
- Use maps in vehicle model, with vehicle improvements applied, to generate fuel consumptions and emissions results over the driving cycle
- Make conclusions re: most effective fuel consumption and emissions reductions strategies and quantify the benefits for a 2017 approach
Acknowledgements

- SwRI would like to acknowledge the support of NESCCAF and ICCT in funding this work

Contacts:

David Branyon

david.branyon@swri.org

Tom Reinhart

thomas.reinhart@swri.org