US Heavy Duty Vehicle Fleets Technologies for Reducing CO\textsubscript{2} An Industry Perspective

Excerpts from presentation to Transportation Research Board
January 14, 2008

Anthony Greszler
Vice President
Advanced Engineering

VOLVO POWERTRAIN CORPORATION
Heavy Duty Vehicle Fuel Efficiency is a Complex Issue

Many types of vehicles with different functions

How to Define & Measure Efficiency?
MPG is not an appropriate efficiency measure

Industry studies indicate 30-50% fuel savings by using triples instead of single trailers

- .5 Tons 96 cu-ft 22 MPG
- 30 Tons 4000 cu-ft 6.5 MPG
- 80 Tons 11000 cu-ft 3.5 MPG

All numbers are approximate
Freight movement energy efficiency is heavily influenced by congestion and vehicle size regulations.
Key Factors in HD Truck Efficiency

Powertrain

Engine
- Combustion/fuel injection
- Peak cylinder pressure
- Turbocharging
 - Increased Efficiency
 - Increased pressure ratio
- Friction and parasitic
- Exhaust aftertreatment
- Turbo compound
 - Mechanical
 - Electric
- Waste heat recovery

Drivetrain
- Transmission
 - Automated manual
- CVT
- Powershift
- Hybrid
 - Electric
 - Parallel
 - Series
 - Hydraulic

- Continuously improving
- New opportunity for optimization
- Coming Soon
Key Factors in HD Truck Efficiency

Vehicle

Tractor
- Aerodynamics
 - Frontal area
 - Side skirts
 - Roof fairings
 - Mirrors
 - Air blowing
- Rolling Resistance
 - Super single tires
 - Proper inflation
- Reduced Mass

Trailer
- Rolling resistance
 - Super Single tires
 - Rolling resistance
- Aerodynamics
 - Side skirts
 - Boat tail
- Weight

Integration
- Matching Powertrain to intended load/speed
- Trailer gap
- Accessories
 - Air compressor
 - Air conditioning
 - Cooling system
 - Power steering
- Idle management
 - APU
 - Truck stop electrification
 - Energy storage systems

Generally Deployed

Increasingly Deployed
Key Factors in HD Truck Efficiency
Regulation and Logistic

Regulations and Public policy
- Road Speed limiting
- Weight limits
- Trailer combinations
- Length limits
- Driver Hours of Service
- Congestion mitigation
- Incentives (hybrid)
- Education and support
 - EPA SmartWay program

Logistics
- Load management/backloads
- Route Optimization
 - Congestion Avoidance
 - Distance Minimization
- Vehicle management
 - Road speed limiting
 - Driver management
 - Smart gearing
 - Acceleration control
 - Idle management
 - Cruise management via GPS
 (anticipating grade and speed limit changes)

- State-to-state inconsistency is a major barrier to efficient freight movement.

- Significant gains have been realized in logistics. Still room for improvement.

Volvo Powertrain
Conclusions

• Commercial trucks have a defined mission to perform.
• Long Haul Trucks move freight.
• Narrowly defined tractor efficiency
 – Could box us into current vehicle configurations that won’t move freight most efficiently
 – Miss opportunities in logistics.
 – Won’t deal with trailers or matching trailers to tractors
 – Won’t meet needs of specialized applications
• We must look at mission efficiency, especially freight movement efficiency.