A Low-Carbon Fuel Standard for the Northeast: Inputs, Impacts and Policy Considerations

NESCAUM / NESCCAF

February 19, 2009

What is a Low-Carbon Fuel Standard?

- Performance-based standard regulating "carbon intensity" or lifecycle carbon emissions from fuels
- Requires displacement of "high" carbon fuels with less carbon intense alternatives such as:
 - low carbon biofuels
 - electricity generated with renewable sources
 - hydrogen produced from renewable sources
- Penalizes carbon intensive fuels such as:
 - petroleum derived from tar sands
 - fuel derived from coal gasification
 - hydrogen derived from tar sands or coal gasification
 - electricity derived from carbon intensive processes

What is a Low-Carbon Fuel Standard? (continued)

- Requires reductions in carbon intensity from today's gasoline and diesel
- Based on lifecycle GHG accounting for gasoline, diesel, biofuels, unconventional fuels, and low carbon alternatives
- Heating oil could be included
- NOT A CAP ON TRANSPORTATION FUEL-RELATED EMISSIONS

Carbon Intensity (CI)

 A measure of the total CO₂-equivalent emissions produced throughout a fuel's <u>lifecycle</u>

(Source: Guihua Wang and Mark Delucchi, 2005. "Pathway Diagrams". Appendix X to the Report "A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials." http://www.its.ucdavis.edu/publications/2003/UCD-ITS-RR-03-17X.pdf)

 Measured in grams of CO2-equivalent GHG emissions per energyunit of fuel

CI Values for Selected NE Fuel Pathways (*Draft Results*):

Pathway	Carbon Intensity (gCO2e/MJ)		
Conventional Gasoline	92.7		
Reformulated Gasoline Blendstock (RBOB)	96.7		
Oilsand RBOB	108		
Ultra-Low-Sulfur Diesel (ULSD)	93		
Oilsand ULSD	105		
Denatured Corn Ethanol	72.6 *		
Soy Biodiesel	35.1 *		
Forest-residue Ethanol: (Fermentation)	-1.7 **		
Forest-residue Ethanol: (Gasification)	11.5 **		
Does not include effects of land-use change	\sim		
Includes new forest growth	NESC		

ΔE

Average Fuel Carbon Intensity (AFCI):

Effect of Ethanol CI on Gasoline AFCI: E10 (Draft Results)

Assumes 10% ethanol by volume in all gasoline, and no other fuels contribute to gasoline AFCI

"Optimistic" and "Pessimistic" estimates of land-use change based on CARB's 10-16-08 presentation "Life Cycle Analysis and Land Use Effects" (www.arb.ca.gov/fuels/lcfs/101608lcfsluc_prstn.pdf).

Effect of Grid Resource Mix on Electricity CI (Draft Results)

	US & CA technology shards based on GREET default; Northeast technology shares based on MARKAL						
	Oil	NG	Coal	Nuke	Bio	Other	
US Avg	3%	19%	51%	19%	1%	8%	\sim
CA Avg	1%	41%	15%	19%	2%	23%	
NE 2005	10%	31%	16%	31%	0%	12%	NESCCAF
NE 2020	4%	41%	8%	18%	2%	27%	

Example Compliance Scenarios:

- The following scenarios are *illustrative purposes only.*
- Illustrate the AFCI impacts of various sets of assumptions.
- NESCAUM / NESCCAF is not advocating for any one or group of fuels or fuel pathways.
- LCFS is intended to promote competition, not dictate specific fuel choices

Example Compliance Scenario (Draft Results): 100% Renewables for EV and PHEV

Assumptions:

- EER = 4.1
- 4% fleet penetration in 2020; new vehicle sales increase linearly from 1.2% in 2011 to 12% in 2020.
 CI values (gCO2e/MJ): Electricity for BEVs and PHEVs: 0; CNG: 73.1; FR-F EtOH = 0

Example Compliance Scenario (Draft Results): 100% NG Electricity for EV and PHEV

Assumptions:

• EER = 4.1

4% fleet penetration in 2020; new vehicle sales increase linearly from 1.2% in 2011 to 12% in 2020.
CI values (gCO2e/MJ): Electricity for BEVs and PHEVs: 44; CNG: 73.1; EtOH = 0

Example Compliance Scenario (Draft Results): 100% NG Electricity for EV and PHEV

Assumptions:

• EER = 4.1

4% fleet penetration in 2020; new vehicle sales increase linearly from 1.2% in 2011 to 12% in 2020.
CI values (gCO2e/MJ): Electricity for BEVs and PHEVs: 44; CNG: 73.1; EtOH = 0

- Baseline includes highway and nonroad diesel only.
- •RFS: 240Mgal BD in 2020; 50% CI reduction compared to ULSD.
- 10% BD in highway diesel = 410 Mgal, displacing 380 Mgal in 2020
- 10% BD in noroad diesel = 250 Mgal, displacing 230 Mgal diesel in 2020
- 10% CNG in highway diesel = 52 quadrillion BTU, displacing 380 Mgal diesel in 2020
- 10% CNG in nonroad diesel = 24 quadrillion BTU, displacing 170 Mgal diesel in 2020

- Baseline includes highway, nonroad and home heating distillate fuels.
- 1.64 Bgal distillate oil displaced by 212 quadrillion BTUs of NG
- 530 Mgal distillate oil displaced by 17000 GWH renewable electricity

- Baseline includes highway, nonroad and home heating distillate fuels.
- 3.5 Bgal distillate oil displaced by 430 quadrillion BTU of NG
- 200 Mgal highway diesel displaced by 25 quadrillion BTU of CNG

- Baseline includes highway, nonroad and home heating distillate fuels.
- 350 Mgal distillate oil displaced by 380 Mgal biodiesel @ CI = 47 gCO2e/MJ
- 350 Mgal distillate oil displaced by 11000 GWh renewable electricity @ CI = 0 gCO2e/MJ
- 350 Mgal distillate oil displaced by 43 quadrillion BTU of NG @ Cl = 71 gCO2e/MJ
- 350 Mgal distillate oil displaced by 3.1 million tons FR pellets @ CI = 18.5 gCO2e/MJ
- 130 Mgal distillate oil displaced by 1.3 million tons LMR pellets @ CI = 11.9gCO2e/MJ

Potential Supply of Low Carbon Fuels from the Northeast

Incorporating Land Use Change (LUC) into GHG Lifecycle Analysis

- Direct LUC emissions can be measured and incorporated in modeling:
- Measure changes in soil C
- Measure changes in aboveground C (trees)
- Measure changes in other GHG
 emissions
- Account for GHG emissions from harvesting, processing

- Indirect LUC emissions are difficult to estimate, almost impossible to measure directly:
- Food, ag and forestry products are globally traded commodities
- Not easy to assign changes in land use to any one factor
- To address concerns over indirect LUC, EU is developing sustainability standards, modifying their Renewable Energy Directive

Woody biomass can be carbon-neutral, but it needs to be sustainably managed to maintain the C stock over time.

Our Approach to Low Carbon Fuel Supply Analysis

- Because of the concerns about indirect GHG emissions, we considered only those regional biomass resources that are most likely to avoid inducing additional land use change:
 - Regionally available and measurable
 - Supply that is incremental to that which serves current markets
 - Waste resources (e.g., oils, MSW)
- Because fuel and energy technologies are undergoing major transformation, we estimated quantities of low carbon fuels assuming that:
 - In the near-term (2010-2015), existing fuel technologies (e.g., biomass electric) dominate production;
 - Over the longer-term (by 2020), developing technologies and fuels (e.g., cellulosic EtOH) come into play.
- We weren't able to conduct a formal sustainability analysis (e.g., impacts on C sequestration, biodiversity, water quality, etc.); instead we made relatively conservative assumptions about <u>maximum</u> versus <u>likely</u> biomass supply.

Estimated Maximum Woody Biomass

State	Dry Ton Equivalent	Area (Land) Sq. Miles	Dry Tons / Sq. Mile	
Connecticut	1,072,000	4,844	221	
Massachusetts	1,698,000	7,80	217	
Rhode Island	193,000	1,045	185	
Vermont	2,488,000	9,250	269	
Maine	2,288,000	30,862	74	
New Hampshire	2,761,000	8,968	308	
New York	12,561,000	47,213	266	
New Jersey	1,980,000	7,417	267	
Pennsylvania	11,689,000	44,816	261	

Maximum is 33 to 37 million dry tons.

Conservative estimate of 8 to 9 million dry tons "likely available".

Estimates of Waste-Based Biomass

Piomoco Cotogony	Unito	Biomass Quantity		
Biomass Category	Units	2010	2020	
MSW (Yard Waste, Paper, Food Scraps, Wood)		20,390,809	20,978,928	
Used Cooking Oil	tons	62,049	63,552	
Livestock Waste		5,215,063	5,355,422	
WWTF Biosolids		725,208	742,761	
Total	tons	33,568,794	34,458,118	
WWTF Biogas	cubic feet	27,892,590	28,567,719	
Total Electricity Potential	MW	471	484	
Total Biodiesel Potential- B5 (from used cooking oil)	million gallons	42	46	
			NESCOAF	

Existing and Developing Fuel Conversion Technologies

Estimated Low Carbon Fuel Production from NE Feedstocks

		2010		2020			
		Thermal Liquid			Thermal	Liquid	
	Electricity	Uses	Fuels	Electricity	Uses	Fuels	
	Generation	(No. of	(million	Generation	(No. of	(million	
Resource	(MW)	Homes)	gallons)	(MW)	Homes)	gallons)	
Woody	368	400,000		1,000	970,000	315	
and							
Ag.							
Biomass	40			40		124	
Waste-							
based	471			484		46	
Resources			42				
						439 (Cell	
		400,000			970,000	EtOH)	
TOTALS	879 MW	homes	42 (B5)	1,524 MW	homes	46 (B5)	

Electricity for Plug-in Hybrids (PHEVs)

- PHEVs are far more efficient than ICE vehicles
- PHEVs are an emerging technology; how consumers might use them is unknown
- Preliminary results suggest timing matters—if charging takes advantage of existing capacity, little incremental capacity will be needed
- Theoretically, PHEVS can be used to enable intermittent renewables ("REfollowing") and provide power TO the grid (V2G) for peaking and back-up power
- Smart metering would benefit PHEV deployment

Chris Yang and PHEV. Source: Chris Yang and Ryan McCarthy, "Carbon Emissions and Grid Impacts of of Using Electricity to Charge PHEVs in California" presentation to Plug-In 2008 Conference, San Jose, CA, July, 2008. http://steps.ucdavis.edu/research/Thread_2/fuels_electricity/3B_Yang_UCD-PHEV-Final.ppt/view

Key Insights on Low Carbon Fuel Supply Analysis

- Waste-based biomass (MSW, waste oils, ag and WW solids) is the Northeast's most significant resource for low carbon fuel production, and one most likely to avoid LUC-related emissions;
- New York and Pennsylvania dominate the available supply of ag and forestry feedstocks; New England has substantial woody biomass but also many existing markets (e.g., pulp and paper);
- In the near-term, fuel production will continue to rely on current technologies and focus on electricity production and thermal applications.

Key Insights on Low Carbon Fuel Supply Analysis

- Electricity is probably the most viable low carbon fuel for transportation in the near-term;
- Over longer-run, developing fuel technologies and advanced biofuels will come into play, but there are large uncertainties over the potential for liquid fuel production in region.
- The Northeast can be a significant producer of low carbon fuels, but states should be proactive in addressing sustainability issues (especially forest health, air emissions, and water demand) within LCFS framework.

Regional Initiative

- June 2008, Governor Patrick sent a letter to all 10 RGGI state governors inviting them to participate
- November 2008, Commissioner Burt circulated a LOI for environmental commissioner to sign
- MN, WA and Quebec/ECP have been invited as observers
- Held state briefing at Yale University in October 2008
- Conference call briefing in November 2008
- Regular monthly calls
- Goal is to have an MOU by December 31, 2009

