Mack Trucks, Inc. Heavy-Duty Diesel Emission Reduction Project

Prepared by NESCAUM Michael Block, principal author Coralie Cooper

June 30, 2005

1. Overview of Programs

This Final Report fulfills a requirement of the consent decree (U.S. v. Mack Trucks, Inc. No. 98-1495) to update EPA on Mack's two consent decree emission reduction projects the "Heavy-Duty Diesel Truck Selective Catalytic Reduction (SCR) Demonstration and In-Use Testing Project along the I95 Corridor" [the "SCR Project"] and the "Heavy-Duty Diesel Truck Aftertreatment Retrofit Project" [the "DOC/DPF Project"]. Both projects started in July of 2000 and were scheduled to be competed by June of 2004. Technical and logistical impediments delayed completion of the projects until the second quarter of 2005 and the submission of this report will close out both projects.

The first of the two projects, the "SCR project", focuses on reducing oxides of nitrogen (NOx) emissions from heavy-duty long haul and vocational trucks. The second project, the diesel oxidation catalyst /diesel particulate filter or "DOC/DPF project" focuses on reducing particulate matter (PM), hydrocarbons (HC), and carbon monoxide (CO) emissions through the installation of DOCs and DPFs predominantly on refuse trucks and a small number of Class 8 line haul trucks.

As part of the SCR project, ten trucks were equipped with SCR systems. Of these ten, eight were long haul, Class 8 tractors from the United Parcel Service (UPS) fleet in Stratford, CT and two were refuse trucks from the Department of Sanitation (DSNY) fleet in New York City. Of these ten trucks, five were also equipped with DPFs as a means of investigating the interactions between SCR and DPF technologies.

As part of the DOC/DPF project, a total of 185 heavy-duty vehicles were targeted for retrofit, including 150 DOCs and 30 DPFs.¹ Table 1 summarizes the truck types and combinations of technologies initially targeted as part of this project, to reduce heavy-duty engine emissions.

Truck Type & Fleet	Number of	Number	Number of	Number of
	DOC	of DPF	SCR system	DPF/SCR
	retrofits	retrofits	installations	combination
				installations
Refuse Truck, WM	150	2	0	0
Refuse Truck, DSNY	0	28	0	2
Class 8, UPS	0	0	5	3
TOTALS	150	30	5	5

Table 1: Summary of Trucks, and Technologies, Initially Targeted for Retrofit

As a result of technological and logistical events during the course of the programs, the number of trucks changed as shown in the following revised table:

¹ As additional 5 DPFs were installed as part of the SCR component of the project for a total of 35 DPFs.

Truck Type & Fleet	Number of	Number	Number of	Number of
	DOC	of DPF	SCR system	DPF/SCR
	retrofits	retrofits	installations	combination
				installations
Refuse Truck, WM	97	2	0	0
Refuse Truck, DSNY	55	28	0	2
Class 8, UPS	0	0	5	3
TOTALS	152	30	5	5

Table 2: Revised summary of Trucks, and Technologies Retrofitted

A summary of DOC, DPF, SCR and SCR+DPF installations is shown below, with a detailed inventory and assessment of retrofitted trucks may be found in the Appendices at the conclusion of this report.

INSTALLATION TOTALS:	
Total DOC Installations:	152
Total DPF Installations:	30
Total SCR Installations:	5
Total SCR+DPF Installations:	5
Truck Counts for DOC Installations:	
Waste Management Trucks:	97
DSNY Refuse Trucks:	55
UPS Class 8 Trucks:	0
Total DOC Installations:	152
Truck Counts for DPF Installations:	
Waste Management Trucks:	2
DSNY Refuse Trucks:	28
UPS Class 8 Trucks:	0
Total DPF Installations:	30
Three UPS DPFs subsequently failed a	nd
removed	
Truck Counts for CCD installations	
Truck Counts for SCR Installations:	0
DONN Defines Trucks:	0
DSNY Refuse Trucks:	0
UPS Class 8 Trucks:	5
Total SCR Installations:	5
Truck Counts for SCP (DPE Installat	tions:
Waste Management Trucke:	0
DSNV Defuse Trucks	2
LIDS Close & Trucks:	2
Total SOD, DDE Installations	ა ნ
TOTAL SCR+DPF Installations:	5

Table 3: "Per Fleet" Summary of DOC, DPF, SCR and SCR+DPF Installations

2. SCR Demonstration Project

a) **Project Partners and Fleets**

From an initial list of potential project partners, the following entities ultimately comprised the SCR Project Team:

Company/Organization	Key Contact(s)	Responsibility
Mack Trucks, Inc.	Will Miller	Technical & project management; SCR
		installation; field support; vehicles;
		funding
NESCAUM	Michael Block	Overall project management; technical
	Coralie Cooper	support; retrofit oversight and
		compliance
M.J. Bradley & Associates	Tom Balon	Technical and field support; DOC
	Paul Moynihan	installation documentation
Manufacturers of Emissions	Dale McKinnon	Technical advice
Controls Association (MECA)		
Argillon GmBH (formerly	Brian Scarnegie	SCR provider; technical support and
Siemens Westinghouse)		training
Department of Sanitation,	Spiro Kattan	Refuse truck fleet for SCR installations;
New York (DSNY)		field support; SCR installation
		documentation
United Parcel Service (UPS),	Dana Johnson	Class 8 truck fleet for SCR installations
Stratford, CT		
Fleetguard	Dale Zuhse	Urea provider
	Larry Olson	

 Table 4: SCR Project Partners

As the project progressed, changes in staffing and institutional direction prompted NESCAUM to assume more of the tasks and responsibilities associated with M.J. Bradley & Associates and MECA.

b) SCR Technology

SCR technology uses urea, which is first converted to ammonia, as the reductant that converts NOx to atmospheric nitrogen and water, as shown in the following figure:

Figure 1: SCR Technology Operating Principle

The Argillon SINOx[™] system used in both the DSNY refuse trucks and the UPS Class 8 longhaul trucks operates on the principle shown above, and consists of the following major components:

- Muffler-like design with integrated SINOxTM SCR catalysts
- Urea injection nozzle
- Urea Dosing Control Unit
- SINOx System Electronic Control Unit and software
- Urea storage tank with sensors and integral heater
- 32.5% by weight urea "premix" solution in water

Figure 2: Argillon SINOxTM SCR System Schematic

The SCR catalysts themselves are homogeneous extruded base metal units ($TiO_2-V_2O_5-WO_3$), with a cell density of 200 cells per square inch (cpsi). The muffler housing for the catalyst itself was constructed from four pieces of round 9.5" diameter canned modules, each 10" in length. The total catalyst volume was 45 liters. A single muffler design was selected to match the single exhaust configuration of both trucks. Dimensionally, this SCR muffler was oval in shape, and measured 14" x 21" x 42".

c) Installation and Deployment

i) DSNY

The SCR units were installed on new refuse trucks at Allentown, PA. These vehicles were completely operational trucks without the Heil-manufactured compactor assembly, which stores and compacts the collected refuse, installed. The trucks were then shipped to a separate facility for compactor assembly installation, and subsequently delivered to DSNY in New York City.

ii) UPS

The UPS trucks were first delivered to the UPS facility in Stratford, CT, and entered in to service without any of the SCR units installed, due to the operational needs of UPS. The trucks were subsequently removed for service one truck at a time, and driven to Mack's Allentown truck assembly facility, where the SCR units were installed. The SCR-equipped trucks were subsequently driven back to Stratford, and re-entered into service. iii) Commissioning – start up problems w/prototype SCR systems

While the SCR system performed well over time, there were a number of significant start-up problems that were not entirely unexpected with these early-design prototype systems. All were resolved through numerous site visits to UPS in Stratford, CT and DSNY in New York City, as part of the commissioning process over an approximately eight months' duration. Specific technical challenges that were addressed during commissioning included:

- (1) Urea Leakages Urea leakages were observed from the exhaust flexible exhaust pipe connections, joints and welds (which typically exhibit a degree of porosity); all were subsequently corrected.
- (2) Urea On-Vehicle Storage Tank Sensor Urea leakage into the sensor and associated wiring harness were observed and corrected.
- (3) Sensor Accuracy Sensors for both the level of urea in the on-vehicle storage tank, and the available pressure in the on-vehicle air pressure system tended to become inaccurate, providing false values.
- (4) Urea Debris Debris was observed in the pumping chamber of the urea pump. The debris was removed, the urea replaced and filters with more stringent filtration capacity installed to rectify the problem. While not definitive, the debris source was adjudged to be from the urea itself, and may have been a contaminated delivery.
- (5) Urea Flow Check Valve The check valve on some vehicles limited urea flow and had to be repaired.
- (6) Urea Pressure Regulator Urea pressure loss over time, stemming from the pressure regulator; had to be corrected.

d) Attainment of Goals

As enumerated in the October 2002 Interim Report to EPA, the goals of the SCR component of the project were to:

- Reduce NOx emissions from in-use heavy-duty diesel engines in northeast urban, ozone non-attainment areas;
- Assess the effectiveness of the SCR control technology in reducing NOx under both steady state and transient conditions over significant periods of time and mileage accumulation;
- Quantify the emissions reductions achieved from the SCR program;
- Demonstrate prototype emissions measuring devices that gather continuous data on NOx emissions;
- Assess the effectiveness of the system to control secondary emissions such as N₂O and NH₃ to minimal levels;
- Develop an understanding of the practical considerations involved in installing SCR technology and a urea infrastructure for in-use highway diesel engines which operate in vocational, over the road or long haul applications.

The SCR component of the program achieved these stated goals. Through comparatively widespread installation of SCR (the most comprehensive in the Northeast to-date), NOx emissions from in-use heavy-duty diesel engines in the region were significantly reduced. This was underscored by the dramatic NOx reductions over protracted periods of in-use operation and mileage accumulation, exhibited in both rounds of testing at West Virginia University (WVU), detailed later in this report. That testing also provided an opportunity for demonstrating prototype emissions measuring devices that gather continuous data on NOx emissions and correlating those data with laboratory instrumentation. Finally, the project served to appreciate the challenges associated with installing SCR technology in these on-highway applications.

 N_2O formation was deleted from the project plan since N_2O formation during initial engine dynamometer testing at Southwest Research Institute (SwRI) was minimal, and Argillion is on record that their catalysts formulations exhibit no history of N_2O formation. Deletion of N_2O measurement is detailed in a letter to EPA from Mack Trucks, dated December 21, 2004, and is included in Appendix F.

Development of a urea infrastructure, an initial goal of the project, proved too costly and logistically challenging to implement, and was modified for the program. The initial concept of developing a pilot urea filling infrastructure along selected areas of the I-95 corridor was replaced by site-installed urea filling stations at both SCR fleet sites, in Stratford, CT for UPS, and in New York City for DSNY. Additionally, other studies have investigated the urea infrastructure issue², nor does absence of this component of the project influence the effectiveness of urea-based reduction techniques for optimal NOx control.

² For example, "SCR-Urea Infrastructure Implementation Final Report, TIAX LLC, July 30, 2003.

3. DOC/DPF Demonstration Project

a) Project Partners and Fleets

From an initial list of potential project partners, the following entities ultimately comprised the DOC/DPF Project Team:

Company/Organization	Key Contact(s)	Responsibility
Mack Trucks, Inc.	Will Miller	Technical & project management; SCR
		installation; field support; vehicles;
		funding
NESCAUM	Michael Block	Overall project management; technical
	Coralie Cooper	support; retrofit oversight and
		compliance
M.J. Bradley & Associates	Tom Balon	Technical and field support; DOC
	Paul Moynihan	installation documentation
Manufacturers of Emissions	Dale McKinnon	Technical advice
Controls Association (MECA)		
Engelhard	Kevin Hallstrom	DPF provider; technical support and
		training
Donaldson	Fred Schmidt	DOC provider
Waste Management	Paul Gagnon	Fleet provider for DOC installations
Department of Sanitation,	Spiro Kattan	Refuse truck fleet for DOC, DPF and
New York (DSNY)		SCR installations; field support; DOC,
		DPF and SCR installation
		documentation
United Parcel Service (UPS),	Dana Johnson	Class 8 truck fleet for DPF and SCR
Stratford, CT		installations

Table 5: DOC/DPF Project Partners

As with the SCR project, as the project progressed, changes in staffing and institutional direction prompted NESCAUM to assume more of the tasks and responsibilities associated with M.J. Bradley & Associates and MECA.

b) DOC and DPF Technology

i) DOC Technology

DOCs are a low-efficiency/high volume retrofit option at a modest price increase over a conventional muffler. DOCs do not employ physical entrapment of PM, as DPFs do. Rather, they utilize a chemical process and "oxidize", or "add oxygen" to hydrocarbons in the exhaust, to form carbon dioxide (CO₂) and water. Oxygen is present in diesel exhaust in large quantities, so oxidation occurs naturally; a DOC speeds up the reaction rate. The soluble organic fraction (SOF) is the hydrocarbon derivative organic carbon (so called "wet" carbon) portion of PM.

DOCs oxidize the SOF fraction of PM and this reaction results in PM reductions, as shown below:

Figure 3: DOC Principle of Operation

ii) DPF Technology

This project utilized a passive DPF, which requires no outside source of heat for PM regeneration; elevated exhaust temperatures, typical of many diesel-powered heavy-duty vehicles promote regeneration in the DPF through oxidation:

Figure 4: DPF Principle of Operation

By combining a DPF with an oxidation catalyst, the soluble organic fraction (SOF) portion can also be removed, making for impressive total PM reducing efficiency (upwards of 90 percent). The Engelhard DPX[®] is a passive regeneration DPF design, and was provided with two precious

metal loading levels to account for the differing fuel sulfur contents available at UPS and DSNY. The DPF with less catalyst loading was used for the low-sulfur diesel (LSD) Class 8 truck application (nominal 350 ppm, sulfur wt.), while the DPF with greater catalyst loading was used for the DSNY refuse hauler (ULSD). Lower catalyst loading is desirable, when diesel fuel with higher sulfur content is used, to avoid production of sulfate in the exhaust, which from a regulatory perspective, is "counted" as part of the PM content.

The DPF is contained within a single muffler housing, configured much like the SCR. The unit is a wall-flow monolith design incorporating a Cordierite filter. The filter measures 11.25" diameter x 14" length, with 100 cpsi cell density. Typical of most DPF designs, the DPX[®] incorporates a removal center section to facilitate ash cleaning. Additionally, a "blank" center section, incorporating "muffler-like" baffles, was also provided. It replaced the Cordierite active center section to simulate the "non-DPF" configuration during the testing sequence. (For Round 2, the entire exhaust aftertreatment system was removed to collect true baseline emissions data).

Figure 5: Typical DPF Assembly (filter for DPF, blank for inactive DPF)

c) Installation and Deployment Results

i) DSNY

The DSNY DOC installations were performed by either Bronx or Queens Gabrielli, the local Mack Truck dealer in the New York metropolitan area. One vehicle, 25CN-762, located in Bronx Depot Four, was installed by DSNY at their central repair facility. All DPFs were in stalled by DSNY.

ii) WM

The DOCs that were utilized by the six WM fleets³ were installed through one of three mechanisms: WM mechanics, the local Mack dealer, or for some of the fleets, through a repair service that performed the installations on-site. The three DPFs that were utilized at the WM facility in Londonderry, NH, were all dealer installed, and were subsequently removed by WM personnel at the direction of NESCAUM and Mack, subsequent to observing steadily increasing exhaust backpressure.

³ Cranston, RI; Londonderry and Rochester, NH; Portland, ME; Somerville and Woburn, MA

d) DPF Failures

Several DPFs had catalytic coatings formulated for compatibility with low sulfur diesel fuel (LSD with 500 ppm maximum sulfur content). Problems were encountered with these DPFs which precipitated their removal due to high exhaust backpressure and resultant substrate failures. Coating deactivation due to fuel sulfur is believed to be the root cause of these problems. Since Waste Management and UPS did not have ULSD fuel available, this theory could not be confirmed. Specific failures included:

- Two vehicles at Waste Management experienced high backpressure due to inadequate passive regeneration; DPFs were removed to prevent engine damage.
- Two vehicles at UPS experienced high backpressure due to filter melting from uncontrolled regeneration. These trucks were towed to dealerships for repair and subsequent DPF removal.
- Two additional vehicles at UPS including replacement of one of the above vehicles experienced high exhaust backpressure; DPFs were removed to avoid further need for truck towing.

In contrast to these experiences using LSD, the DSNY refuse trucks using ULSD and coatings formulated for ULSD, was positive. No failures were reported during the program, and these 30 DPFs will remain in service beyond the conclusion of this project.

Additionally, all the initial DPFs exhibited minor exhaust leaks which were rectified through installation of DPF housing flange gaskets.

e) Attainment of Goals

As enumerated in the October 2002 Interim Report to EPA, the goals of the project were to:

- Reduce PM, HC, and CO emissions from in-use heavy-duty diesel engines in northeast urban, ozone and PM non-attainment areas;
- Assess the effectiveness of the DOC and DPF control technologies in reducing pollution over long periods of time;
- Quantify the emissions reductions achieved from the retrofit program;
- Develop an understanding of interactions when combining DPF and SCR technologies in series.

As with the SCR component, the DOC/DPF component of the program achieved the goals, enumerated above. Installation of the DOCs in seven varied geographic areas represented one of the most comprehensive PM (as well as HC and CO) reduction endeavors for the on-highway sector, to-date. In addition to the 55 DSNY refuse trucks, DOCs were installed on 97 Waste Management Trucks in fleets in the following locations: Cranston, RI; Londonderry and Rochester, NH; Portland, ME; Somerville and Woburn, MA.

The in-use DOC emissions testing component of the program was dropped, with the inherent robustness and proven commercialization of this technology providing a very high confidence levels that the DOCs, on a fleetwide basis, provided the PM, HC and CO reductions stated by Engelhard⁴, and extensively substantiated in the literature.

While the WVU testing proved inconclusive in quantifying the PM-reduction performance of the DPFs, the combination of SCR with the DPF exhibited no effect upon emissions performance or operational feasibility.

4. Revisions to Projects Budget and Schedule

a) Budget

	Original Budget	Revised Budget	Difference
SCR Demonstration	\$1,410,000	\$1,772,000	+ \$362,000
Project			
DOC/DPF	\$1,310,000	\$998,000	- \$312,000
Demonstration Project			
Totals	\$2,720,000	\$2,770,000	+ \$50,000

Table 6: SCR and DOC/DPF Projects Budget Revisions

⁴ See letter to EPA from Mack Trucks entitled "United States v Mack Trucks, Inc., Offset Project Modification," dated December 21, 2004.

b) Schedule – SCR Project

INITIAL SCR PROJECT SCHEDULE

FINAL SCR PROJECT SCHEDULE

task	start	end			200	00						20	001									20	02								2	003	3								20	04				_	Г		20	05	
			Μ.	JJ	A	SC	N	D.	JF	М	ΑN	ΛJ	J	А	S	D N	I D	J	F	ΜA	١M	1 J	J	AS	SC) N	D	JF	M	A	Μ.	JJ	А	S	D N	I D	J	F١	MA	١M	J	J	A	S	٥N	۱D) J	F	М	A	٨J
project planning	Jul-00	Aug-00																																											Τ	Т	Г		Π	Л	
truck and engine selection																																														Τ	Г		Π	Л	
survey of fleet	Jul-00	Apr-01																																												T	L		Π	Π.	
final selection	Apr-01	Apr-01																																												L	L		Π	Ξ.	
truck, engine, and SCR preparation																																													Τ	Т	Г		Π	Л	
engine application testing	May-01	Aug-01																																												Τ	Г		Π	Л	
vehicle engineering	Nov-00	Dec-01																																												T	L		Π	. Т	
component fabrication	Mar-01	Dec-01																																												L	L		Π	Ξ.	
SCR installation	Sep-01	Mar-02																																												L	L		Π		
truck delivery	Feb-02	Apr-02			П							Γ				Γ									Т	П		Т							Т		Π		Т	Т	Π		Т	Т	Т	Т	Г	П	П	Т	П
SCR in use at customer sites	Feb-02	Oct-04																																												L	Г				
emission testing				Т	П	Т	П		Т	П	Т	Т	Г			Т		П																										Τ	Т	Т	Т	П		T	П
planning	Oct-00	Dec-01		Т	П																Т					П		Т	Т						Т		П				П			Т	Т	Т	Г	П		T	Π
SwRI cell test	Jun-01	Aug-01		Т	П		Π											П			Т					П		Т	Т						Т		П				П			Т	Т	Т	Г	П		T	Π
in-use test 1	Apr-03	Apr-03		Т	П	Т	П		Т	П	Т	Т	Γ			Т		П			Т					П		Т	Т						Т		П				П			Т	Т	Т	Г	П		T	П
WVU dyno 1 (after 12 mo)	May-03	Jun-03		Т	П	Т	П		Т	П	Т	Т	Г			Т		П			T					П		Т							Т		П				П			Т	Т	Т	Т	П		T	П
in-use test 2	Apr-04	Apr-04		Т	П	Т	П		Т	П		Т	Γ			Т										П		Т							Т		П				П			Т	Т	Т	Т	П		T	П
WVU dyno 2 (after 24 mo)	May-04	Jun-04		Т	П	Т	П						Γ																						Т		П							Т	Т	Т	Т			T	П
urea filling stations				Т	П		П																												Т		П				Π			Т	Т	Т	Т				П
site selection	May-01	Jul-01		Т			Π		Τ																																			Т	Т	Т	Т				П
equipment selection	Nov-00	Jul-01		Т	П	Т										Т										П		Т							Т		П				П			Т	Т	Т	Т	П		T	П
pump station fabrication	Aug-01	Jul-02		Т	П	Т	П					Г								Т					Т	П		Т							Т	Г	Π	Τ		Т	П		Т	Т	Т	Т	Г	П	П	Т	T
installation	Dec-01	Aug-02		Т	П	Т	П					Г				Γ				Т					Т	П		Т							Т	Г	Π	Τ		Т	Π		Т	Т	Т	Т	Г	П	П	Т	T
reports																																													Т	Т	Г				П
NESCAUM mid-project	Oct-02	Oct-02																																											Т	Т	Г				П
WVU emissions #1	Mar-04	Mar-04																																											Γ	Т	Г		Π	Л	
WVU emissions #2	Mar-05	Mar-05		Т	П	Т	П					Γ				Γ				Т					Т	П		Т							Т	Г	П	Τ		Т	Π		Т	Т	Т	Т	Г	П		Т	T
NESCAUM final	Jun-05	Jun-05	П		П		Π																					Τ							Γ		П							Τ	Τ	Т	Т	П	П	T	
post-test					П		П														Γ								Γ								Π			T	Π				Т	Т	Г			Т	
remove SCR	Jan-05	Mar-05		Τ	П	T	П				T		Γ												T			T									П							T	Т	Т				T	П

c) Schedule – DOC/DPF Project

INITIAL PM PROJECT SCHEDULE

FINAL PM PROJECT SCHEDULE

task	start	end		2	000					20	001								2	002				Τ				20	03							2	200/	4					2	005	j
			ΜJ	JA	A S C) N I	DJ	FΝ	1 A I	ИJ	IJ	A	S C	D N	D	JF	FM	A	МJ	IJ	A	sΟ	N	D.	١F	M	ΑN	1 J	JA	١S	0	ND	J	F۸	ΛA	M	ĴĴ	A	S	0	۱D	J,	F۸	ΛA	ΜJ
project planning	Jul-00	Oct-00																																		Л	T					\square	Т	\Box	\square
truck and engine selection									П																												Т					П	Т	Т	\square
survey of fleet	Jul-00	Jun-01																																			Τ							Т	
final selection	May-01	Jun-01																																			Τ							Т	
preparation work																																				Л	T					\square	Т		\square
engine application testing	Jan-01	Aug-01																																		Л	T					\square	Т	\Box	\square
vehicle engineering	Jan-01	Dec-01																																			Τ							Т	
component fabrication	Jan-01	Dec-04																																								Π	Т	Т	
durability verification																																				Л	T					\square	Т		\square
DOC and brackets	Nov-01	Dec-01							П																											Т	Т					П	Т	П	\square
DPF and brackets	Jan-02	Feb-02											Τ											Т								Т		Τ		Т	Т					П	Т	Т	
installation of aftertreatment																																				Т	T					Π	Т	П	
trucks with DOC (150)	Aug-01	Apr-03																																		Л	T					\square	Т	\Box	П
trucks with DPF (30)	Oct-02	Mar-05				П			П																																				\square
trucks with SCR+DPF (5)	Jun-03	Jan-04							П																											Т	Т					П	Т	Т	\square
testing																																				Т	Τ					Π	Т	П	
DOC emissions at Mack	Jul-01	Jul-01																																		Л	T					Π	Т	\Box	П
DPF emissions at SwRI	Jul-01	Aug-01				П			П				Τ						Т	П										П					П	Т	Т					П	Т	Π	Π
backpressure monitoring (35)	Oct-02	Jun-05																																											
WVU dyno 1 (DPF as-new)	May-03	Jun-03																																			Τ					П	Т	П	
WVU dyno 2 (DPF after 12-mo)	May-04	Jun-04				П			П			П	Т						Т	П								П		П					П							П	Т	Π	П
reports			П		П								Т	П		Т			Т					Т	Γ							Т	П	Т		Т	Т				Т	П	Т	Π	Π
NESCAUM mid-project	Oct-02	Oct-02																																			Т					Π		Т	
WVU emissions #1	Mar-04	Mar-04																																			T				Γ	П		Т	
WVU emissions #2	Mar-05	Mar-05	П		П								Т			Т																		Τ	П	Т	Т				Γ	П			П
NESCALIM final	Jun-05	lun-05			TT	TT			TΤ		Г			Г						П		1	П									Т	ГТ		П		Т				Т	ſΤ		17	

5. West Virginia University Testing

As part of the provisions of the Consent Decree Settlement, two rounds of testing were performed at WVU to assess the long-term operational characteristics of the SCR and the DPF.

A first round of chassis dynamometer testing, using the WVU Transportable Heavy-Duty Vehicle Emission Testing Laboratory ("Translab"), was completed on two of the UPS trucks and one of the DSNY trucks in June of 2003, while a second round of testing on the same vehicles was completed in June of 2004. One UPS truck and the DSNY truck were equipped with SCR and DPF, while the second UPS truck utilized SCR alone. In all, the SCR systems have compiled approximately two million cumulative miles, of which the three tested trucks have over 500,000 miles.

The two UPS trucks were operated over the Heavy-Duty Urban Dynamometer Driving Schedule (UDDS), while the DSNY truck was operated over the William H. Martin Garbage Truck Cycle (WHM), which is more appropriate for the urban-biased duty cycles typical of these vehicles. Research grade analyzers, drawing samples of dilute exhaust from a full-scale constant volume sampling (CVS) tunnel, measured and recorded all criteria emissions. Ammonia emissions were measured and recorded using two methods (the second added for Round 2 testing) to characterize ammonia concentration in the exhaust which may occur in the event of excess urea injection. The table and figures below, describe the emissions sampling equipment and test cycles used for the tests:

Emissions Constituent	Instrumentation	Collection Type
NO, NOx	Chemiluminescent Detector (CLD)	Continuous
PM	Gravimetric	70 mm Pallflex Filters
HC	Heated Flame Ionization Detector (HFID)	Continuous
CO	Non-Dispersive Infrared Detection (NDIR)	Continuous
CO ₂	Non-Dispersive Infrared Detection (NDIR)	Continuous
NH ₃	Innova 1302 Photoacoustic	Bag Batch
	Eco Physics 822 CM (Round 2 only)	Continuous

Table 6: Emissions Sampling Equipment, WVU Testing

Figure 6: UDDS Test Cycle (UPS Class 8 Trucks)

Figure 7: WHM tests cycle (for DSNY Refuse Truck)

The chassis-based testing program documented emission reduction performance from a fleet of vehicles accumulating mileage on both SCR and DPF control technologies. Comprehensive testing over two years' of vehicle use provided insight into the long-term operational feasibility

of these devices. With nearly $\frac{1}{2}$ million miles over the three vehicles tested, it was concluded that:

1. The key goals in the WVU testing portion of the program, was an assessment of SCR NOxreducing performance over protracted long-term, in-use operation. As the accompanying figure shows, SCR achieved high NOx reduction after one year in-use (79%-95%) and after two years in-use (81%-91%) operation, for all three tested vehicles:

Figure 8: Round 1 and Round 2 NOx Emissions Using SCR

Other noteworthy conclusions from the testing include:

2. SCR NOx-reduction performance was unaffected by the fuel sulfur concentration used (LSD or ULSD). This may provide an opportunity for use of SCR as a viable NOx-reduction device, in regions of the world such as in developing nations, where diesel fuel sulfur content is usually high.

- 3. HC and CO reductions were, for the most part, in agreement with expectations based on differences in DPF coatings and fuel sulfur levels. Results indicate little to no deterioration in HC and CO reduction performance during the two-year period.
- 4. PM results were well below the reduction values exhibited in the SwRI dynamometer testing, or in the literature, averaging around 35 40%, rather than the 80 90% expected. There are many potential explanations including installation of non-degreened DPFs, possible sulfate-make, and possible system deterioration. In hindsight, improved test planning and post-test PM analysis should be conducted in future studies of this nature.
- 5. NH₃ emissions were minimal after one year in-use and after two years in-use. Low levels of NH₃ indicate that the urea injection strategy was performed properly. Overall, integrated results were in agreement with expectations.
- 6. Combined DPF and SCR systems showed no impact of the DPF on SCR performance. NOx reduction was unaffected with and without DPF. Due to unexpected PM results, the combined system performance upon PM cannot be concluded.

6. Appendices

- a) Appendix A, Table of DOC Installations, Waste Management Fleets
- b) Appendix B, Table of DOC Installations, DSNY Fleet
- c) Appendix C, Table of DPF Installations, DSNY and UPS Fleets
- d) Appendix D, Table of SCR+DPF Installations, DSNY Fleet
- e) Appendix E, Table of SCR Installations, DSNY & UPS Fleets
- f) Appendix F, Letter to EPA from Mack Trucks entitled "United States v Mack Trucks, Inc., Offset Project Modification," dated December 21, 2004

MACK RETROFIT PROGRAM

Waste Management DOC Installations = 110 Gross, 81 Net

blue denotes documented installation, but truck "unavailable" -- added to total yellow denotes indeterminant installation -- not added to total green indicates truck is, or will be, retired -- not added to total

								Informatior	At Date of D	OC Installation		Informat	ion At Da	te of Final	Check
Tot No.	Loc Nos.	Location	VIN or Unit Number	WM Truck ID	Truck Type	Installer	Date	Mileage	Hours	Notes	v/n	Date	By Whom	Veh Mileage	Veh Hours
							Duit	lineage	replaced 1M2	<195CX1M018394	<i>,</i> ,,,	Duit			
1	1	Cranston, RI	1M2K195C016424	305471	MR		9/16/02	16,424	Out	of Service	N/A	N/A	N/A	N/A	N/A
		Out the Di	1110//1050 010/05	005 170	ND	Delle edite Manufel	0/40/00	00 544	replaced 1M	2K195C11M018395	N/	40/00/0000	TID	47.000	0.700
2	2	Cranston, RI	1M2K195C016425	305472	MR	Ballard In Warwick	9/16/02	33,544	(306960)	Ŷ	10/30/2003	IJD	47,960	8,729
3	3	Cranston, RI	1M2K195CX1M018573	307041	MR - Type 1	Ballard in Warwick	9/16/02	34,632			Y	10/30/2003	TJD	56,014	7,355
4	4	Cranston, RI	1M2K195C11M018574	307042	MR - Type 1	Ballard in Warwick	9/16/02	34,969			Y	10/30/2003	TJD	56,625	7,320
5	5	Cranston, RI	1M2K195C31M018575	307044	MR - Type 1	Ballard in Warwick	9/16/02	31,227			Y	10/30/2003	TJD	50,984	6,806
6	6	Cranston, RI	1M2K195C51M018576	307045	MR - Type 1	Ballard in Warwick	9/16/02	34,073			Y	10/30/2003	TJD	53,179	7,179
7	7	Cranston, RI	1M2K195C71M018577	307046	MR - Type 1	Ballard in Warwick	9/16/02	39.867	Not equipped with a DOC		N	10/30/2003	TJD	38.638	6.287
8	8	Cranston, RI	1M2K195C91M018578	307047	MR - Type 1	Ballard in Warwick	9/16/02	33,553			Y	10/30/2003	TJD	54,539	7,000
٩	<u>م</u>	Cranston RI	1M2K105C01M018570	307048	MR - Type 1	Ballard in Wanwick	9/16/02	30 953	3		v	10/30/2003	тір	51 460	6 853
0	Ŭ	Oranotori, ra		001040	Witter Type 1	Dullard III Walwick	5/10/02	00,000				10/00/2000	100	01,400	0,000
10	10	Cranston, RI	1M2K195C01M018677	307049	MR - Type 1	Ballard in Warwick	9/16/02	35,007			Y	10/30/2003	TJD	56,995	7,259
44		Creation DI	4140//40500414040070	207050	MD Trank (Dellard in Warwish	0/46/02	22 700			V	40/20/2002	TID	55 004	7 557
11	11	Cranston, RI	TM2K195C21M018678	307050	IVIR - Type T	Ballard In Warwick	9/16/02	33,780			ř	10/30/2003	IJD	55,821	7,557
12	12	Cranston, RI	1M2K195C41M018679	307051	MR - Type 1	Ballard in Warwick	9/16/02	33,516			Y	10/30/2003	TJD	55,334	7,301
13	13	Cranston, RI	1M2K195C5XM012673	202434	MR - Type 1	Ballard in Warwick	9/16/02	102,593			Y	10/30/2003	TJD	193	1,808
14	14	Cranston, RI	1M2K191C0PM004289	201685	MR - Type 2	Ballard in Warwick	9/16/02	179,422		Not on Site	N/A	N/A	N/A	N/A	N/A
15	15	Cranston, RI	1M2K195C42M019848	206018	MR - Type 1	Ballard in Warwick	9/16/02	60,851			Y	10/30/2003	TJD	128,405	6,507
16	16	Cranston, RI	1M2K191C3PM004299	201686	MR - Type 2	Ballard in Warwick	9/16/02	209,869			Y	10/30/2003	TJD	2,759	7,543
-															
17	17	Cranston, RI	1M2K195C0WM010733	201698	MR - Type 1	Ballard in Warwick	9/16/02	129,470			Y	10/30/2003	TJD	164,314	14,209
18	18	Cranston RI	1M2K195C2WM011561	201697	MR - Type 1	Ballard in Warwick	9/16/02	142 372			Y	10/30/2003	T.ID	187 269	13 661
		Granoton, ru		20.001		Sanara III Warmon	0, 10,02		2,372			10,00/2000		,200	.0,001
19	19	Cranston, RI	1M2K195C004845	201688	MR	Ballard in Warwick	9/16/02	29,281	replaced 1M	2K191C7PM004290	Y	10/30/2003	TJD	298,991	32
20	20	Cranston, RI			LE - Type 3	Cranston	11/6/01	33,544	Could not find che	- no truck # or VIN to eck against	N/A	N/A	N/A	N/A	N/A

21	1	Londonderry, NH	1M2K181C9RM005647	201434	MR - Type 2	Londonderry	7/30/02	250,067	7,082		Y	10/21/2003	TJD	8,305	680
22	2	Londonderry, NH	1M2K181C0RM005648	201441	MR - Type 2	Londonderry	6/28/02	221,605	8,166	Gone from site.	N	10/21/2003	TJD		
23	3	Londonderry, NH	1M2K195C0YM015773	204492	MR - Type 1	Londonderry	7/24/02	106,333	6,616		Y	10/21/2003	TJD	154,753	10,076
24	4	Londonderry, NH	1M2K195C2XM015644	203608	MR - Type 1	Londonderry	7/9/02	101.252	8.425		Y	10/21/2003	TJD	152.525	11.986
25	5	Londonderry, NH	1M2K195C7YM015771	204490	MR - Type 1			has part	#2ME31Q2BO (82699.9/70	11/21/02 mile/hr	Y				
26	6	Londonderry NH	1M2K195C9XM015026	203584	MR - Type 1	Londonderry	6/24/02	132 616	8 375		Y	10/21/2003	TID	172 727	11 323
27	7		1M2K105C0VM015772	204401	MR Type 1	Londondorny	7/2/02	01 742	6 165		 	10/21/2002	TID	179	0,700
21		Londonderry, NH		204491		Londonderry	0/05/00	91,742	0,105			10/21/2003		050.000	5,100
28	8	Londonderry, NH	1M2K195C0WM012191	206704	MR - Type 1	Londonderry	6/25/02	200,324	2,112	replaced 1M2K166C5LM00214	Y	10/21/2003	IJD	256,236	5,493
29	9	Londonderry, NH	1M2K195C3LM019449	307338	MR - Type 1	Londonderry	7/4/02	22,635	2,782	9	Y	10/21/2003	TJD	47,797	6,648
30	10	Londonderry, NH	1M2K195C1XM014503	306835	MR - Type 1	Londonderry	6/28/02	79,087	8,954		Y	10/21/2003	TJD	106,331	1,828
31	11	Londonderry, NH	1M2K195C2XM012713	302006	MR - Type 1	Londonderry	6/21/02	92,522	9,643		Y	10/21/2003	TJD	122,516	3,161
32	12	Londonderry, NH	1M2K195C4XM012714	302008	MR - Type 1	Londonderry	7/4/02	97,613	85		Y	10/21/2003	TJD	131,902	3,629
33	13	Londonderry, NH	1M2K195C6XM014500	306386	MR - Type 1	Londonderry	6/20/02	69,151	8,590		Y	10/21/2003	TJD	108,090	2,440
34	14	Londonderry, NH	1M2K195C7XM014506	306834	MR - Type 1	Londonderry	6/27/02	71,118	8,442		Y	10/21/2003	TJD	103,687	1,715
35	15	Londonderry, NH	1M2K195C8XM012716	302007	MR - Type 1	Londonderry	6/24/02	117,696	9,861		Y	10/21/2003	TJD	158,858	3,555
36	16	Londonderry NH	1M2K195C8XM014501	306832	MR - Type 1	Londonderry	7/2/02	90 989	9 220		Y	10/21/2003	T.ID	126 424	2 650
37	17	Londonderry, NH	1M2K195CXXM014502	306833	MR - Type 1	Londonderny	6/20/02	100 392	8 903		v	10/21/2003	TID	144.031	2 334
38	18		1M2AC07C8YM004079	520023		Londonderry	11/7/01	100,002	2 786	Not on site at time of		10/21/2000	100	111,001	2,001
20	10	Londondorry, NH	1M2K106CYWM049540	020020	MP Type 1	Londonderry	TIMOT		2,700	to be retired					
39	19	Londonderry, NH	110121013507101012540		win - Type 1										
40	20	Londonderry, NH	1M2K166C5LM002149		MR - Type 2					to be retired					
41	21	Londonderry, NH	1M2K166C8KM001933		MR - Type 2					to be retired					
42	22	Londonderry, NH	1M2K166C9KM001567		MR - Type 2			not on equip	oment list @ fac (11/21/02	ility, probably retired 2)					

43	1	Portland, ME	1M2AC07C4SM001302	260096	LE - Type 3	9/11/02	153,000	Out of Service	N/A	10/29/2003	TJD	N/A
44	2	Portland, ME	1M2K138C1LM003200	201773	MR - Type 2	9/11/02	153,000	Not on site.	N/A	10/29/2003	TJD	N/A
45	3	Portland, ME	1M2K138C5KM002873	201771	MR - Type 2	9/11/02	389,000		Y	10/29/2003	TJD	411,115
46	4	Portland, ME	1M2K138C9LM003199	201772	MR - Type 2	9/11/02	76,000		Y	10/29/2003	TJD	8,278
47	5	Portland, ME	1M2K195C1XM013240	201780	MR - Type 1	9/11/02	105,000		Y	10/29/2003	TJD	139,483
48	6	Portland, ME	1M2K195C7VM010095	201774	MR - Type 1			Not on Site	N/A	10/29/2003	TJD	N/A
49	7	Portland, ME	1M2K195C8XM014188	200556	MR - Type 1	9/11/02	88,000		Y	10/29/2003	TJD	117,892
50	8	Portland, ME	1M2K195CXWM011811	201777	MR - Type 1	9/11/02	131,000		Y	10/29/2003	TJD	159,475
51	9	Portland, ME	1M2K195CXXM014189	200557	MR - Type 1	9/11/02	120,000		Y	10/29/2003	TJD	169,402
52	10	Portland, ME	1M2K195C2YM016617	305232	MR - Type 1			Not equipped with a DOC	N	10/29/2003	TJD	77,835
53	11	Portland, ME	1M2K195C5SM006056	302531	MR - Type 2	9/11/02	138,000		Y	10/29/2003	TJD	164,391
54	12	Portland, ME	1M2K195CXRM004961	302532	MR - Type 2	9/11/02	93,000		Y	10/29/2003	TJD	115,201

55	1	Rochester, NH	1M2A07C8WM002457	260072	LE - Type 3	Rochester	done				Y	10/29/2003	TJD	145,389	4,129
56	2	Rochester, NH	1M2AC07C4WM002536	260073	LE - Type 3	Rochester	done				Y	10/29/2003	TJD	121,267	3,378
57	3	Rochester, NH	1M2AC07C6WM002537	260074	LE - Type 3	Rochester	done				Y	10/29/2003	TJD	99,440	2,054
50		Deskerter NU		505000		Desharter	dawa				Ň	10/00/0000	TID	440 500	4 404
58	4	Rochester, NH	1M2AC07C4WM002570	505026	LE - Type 3	Rochester	done				Ý	10/29/2003	IJD	142,539	4,431
59	5	Rochester, NH	1M2AC07CXWM002573	Could not find	LE - Type 3	Rochester	done			Could not find truck	N/A	10/29/2003	TJD	N/A	N/A
60	6	Rochester, NH	1M2AC07CYM005040	Could not find	LE - Type 3	Rochester	done			Could not find truck	N/A	10/29/2003	TJD	N/A	N/A
61	7	Rochester, NH	1M2K185C6XM007430	200090	MR - Type 1	Rochester	done				Y	10/29/2003	TJD	194,455	5,012
62	8	Rochester NH	1M2K191C7NM003640	Could not find	MR - Type 2	Rochester	done			Could not find truck	N/A	10/29/2003	TID	N/A	N/A
02				Could Hot hind	Mit Type 2	Rooncolor	done			Codia not fina traok	14/7 (10/20/2000	100	1.07	1.077
63	9	Rochester, NH	1M2K191C7PM004595	200113	MR - Type 2	Rochester	done				Y	10/29/2003	TJD	381,156	7,229
64	10	Rochester, NH	1M2K195C4XM015208	200824	MR - Type 1	Rochester	done				Y	10/29/2003	TJD	161,034	12,241
65	11	Rochester, NH	1M2K195C6XM015209	200825	MR - Type 1	Rochester	done				Y	10/29/2003	IJD	182,113	11,354
66	12	Rochester, NH	1M2K185C8XM007431	200025	MR - Type 1	Rochester	done				Y	10/29/2003	TJD	290.936	4.705
67	13	Rochester, NH	1M2K166C7DM002198	Could not find	MR - Type 1	Rochester	done			Could not find truck	N/A	10/29/2003	TJD	N/A	N/A
68	14	Rochester, NH	1M2K195C91M018841	205814	MR - Type 1	Rochester	done				Y	10/29/2003	TJD	112,402	2,531
69	15	Rochester, NH	1M2K195C01M018842	205815	MR - Type 1	Rochester	done	N	ot equipped wit	h a DOC	N	10/29/2003	TJD	111,224	6,793
70	16	Rochester, NH	1M2K195C71M017946	206048	MR - Type 1	Rochester	done				Y	10/29/2003	TJD	105,300	6,738

71	1	Sommerville, MA	1M2K195C6VM010265	302065	MR - Type 1	McDevitt in Avon	9/20/02	41,908		Y	10/27/2003	TJD	51,409	5,541
72	2	Sommerville, MA	1M2K195C8VM010266	302066	MR - Type 1	McDevitt in Avon	9/27/02	38,922		Y	10/27/2003	TJD	48,226	4,688
73	3	Sommerville, MA	1M2K195C5YM015770	306485	MR - Type 1	McDevitt in Avon	11/21/02	50,125	Not on site.	N/A	10/27/2003	TJD	N/A	N/A
74	4	Sommerville, MA	1M2K195CXYM015778	306486	MR - Type 1	McDevitt in Avon	8/27/02	29,560	Not on site.	N/A	10/27/2003	TJD	N/A	N/A
75	5	Sommerville, MA	1M2K195C0WM012207	302087	MR - Type 1	McDevitt in Avon	8/27/02	57,358		Y	10/27/2003	TJD	67,469	3,435
76	6	Sommerville, MA	1M2K195C2WM012208	302088	MR - Type 1	McDevitt in Avon	8/20/02	36,510	Not on site.	N/A	10/27/2003	TJD	N/A	N/A
77	7	Sommerville, MA	1M2K195C4WM012209	302089	MR - Type 1	McDevitt in Avon				Y	10/27/2003	TJD	58,208	2,917
78	8	Sommerville, MA	1M2K195C0XM015030	304575	MR - Type 1	McDevitt in Avon	8/5/02	47,061		Y	10/27/2003	TJD	30,099	9,397
79	9	Sommerville, MA	1M2K195C2XM015031	304571	MR - Type 1	McDevitt in Avon	8/12/02	20,000	Not on site.	N/A	10/27/2003	TJD	N/A	N/A
80	10	Sommerville, MA	1M2K195C9XM013311	302091	MR - Type 1	McDevitt in Avon	9/25/02	26,941		Y	10/27/2003	TJD	32,235	939
81	11	Sommerville, MA	1M2K195C0XM013312	302092	MR - Type 1	McDevitt in Avon				Y	10/27/2003	TJD	35,422	9,882
82	12	Sommerville, MA	1M2K195CXXM012670	305770	MR - Type 1	McDevitt in Avon	8/19/02	21,000		Y	10/27/2003	TJD	37,893	9,815
83	13	Sommerville, MA	1M2K195C1YM016625	305230	MR - Type 1	McDevitt in Avon	9/20/02	28,918		Y	10/27/2003	TJD	39,000	9,389
84	14	Sommerville, MA	1M2K195C3YM016626	305231	MR - Type 1	McDevitt in Avon				Y	10/27/2003	TJD	38,371	9,187
85	15	Sommerville, MA	1M2K195C3VM010582		MR -	McDevitt in Avon	9/26/02	40,398	Could not find truck	N/A	10/27/2003	TJD	N/A	N/A

86	1	Woburn, MA	1M2K195C1XM013237	200554	MR - Type 1	8/1/01			Y	10/22/2003	TJD	124,978	1,622
87	2	Woburn, MA	1M2K195C3RM004977	201475	MR - Type 2	10/24/02		Not equipped with a DOC	Ν	10/22/2003	TJD	254,304	5,598
88	3	Woburn, MA	1M2K195C3RM004980	201476	MR - Type 2			Not on site.	N/A	10/22/2003	TJD	N/A	N/A
89	4	Woburn, MA	1M2K195C0VM010097	201479	MR - Type 1	10/24/02			Y	10/22/2003	TJD	219,187	5,828
90	5	Woburn, MA	1M2K195C9WM010441	201488	MR - Type 1	10/24/02		Truck out of service - Burned by fire.	N/A	10/22/2003	TJD	N/A	N/A
91	6	Woburn, MA	1M2K195C3XM012610	201489	MR - Type 1	10/24/02			Y	10/22/2003	TJD	169,357	4,640
92	7	Woburn, MA	1M2K195C5WM012560	302128	MR - Type 1	10/24/02			Y	10/22/2003	TJD	137,797	4,551
93	8	Woburn, MA	1M2K195C7WM012561	302129	MR - Type 1				Y	10/22/2003	TJD	130,248	4,341
94	9	Woburn, MA	1M2K195C0XM012905	302131	MR - Type 1	10/24/02			Y	10/22/2003	TJD	96,154	5,647
95	10	Woburn, MA	1M2K195C9XM012904	302133	MR - Type 1	10/24/02			Y	10/22/2003	TJD	82,069	5,168
96	11	Woburn, MA	1M2K195C7YM016886	305456	MR - Type 1	10/24/02			Y	10/22/2003	TJD	74,649	10,520
97	12	Woburn, MA	1M2K195C9YM016887	305457	MR - Type 1	10/24/02			Y	10/22/2003	TJD	39,327	9,359
98	13	Woburn, MA	1M2K195C3XM012672	305748	MR - Type 1	10/24/02			Y	10/22/2003	TJD	42,506	9,855
99	14	Woburn, MA	1M2K195C31M018057	306487	MR - Type 1	10/24/02			Y	10/22/2003	TJD	75,697	8,135
100	15	Woburn, MA	1M2K195C51M017797	306488	MR - Type 1	10/24/02			Y	10/22/2003	TJD	72,918	7,890
101	16	Woburn, MA	1M2K195C11M017795	306489	MR - Type 1	10/24/02			Y	10/22/2003	TJD	73,421	8,180
102	17	Woburn, MA	1M2K195C31M017796	306490	MR - Type 1	10/24/02		At Mack dealer.	N/A	10/22/2003	TJD		
103	18	Woburn, MA	1M2K195C51M018058	306622	MR - Type 1	10/24/02			Y	10/22/2003	TJD	54,845	7,925
104	19	Woburn, MA	1M2K195C71M017798	306623	MR - Type 1	10/24/02			Y	10/22/2003	TJD	58,800	8,210
105	20	Woburn, MA	1M2K195C01M019084	307255	MR - Type 1	10/24/02			Y	10/22/2003	TJD	49,905	7,149
106	21	Woburn, MA	1M2AC07C9TM001278	260798	LE - Type 3	8/1/01			Y	10/22/2003	TJD	137,499	7,500
107	22	Woburn, MA	1M2AC07C9TM001281	260799	LE - Type 3				Y	10/22/2003	TJD	188,155	9,689
108	23	Woburn, MA	1M2AC07C25M001184	260800	LE - Type 3				Y	10/22/2003	TJD	217,596	2,774
109	24	Woburn, MA	1M2AC07C5WM002450	260801	LE - Type 3			Not equipped with a DOC	Ν	10/22/2003	TJD	117,423	1,428

No.	Vehicle ID No.	Depot Location	VIN	Installation Date	Installation Dealer	Vehicle Miles at Time of Installation	Vehicle Hours at Time of Installation	ECT Manufacturer	Emissions Technology
1	25CN -029	MW07	1M2AC07C3YM003437	March 6, 2003	Queens Gabrielli	16 854	2 703	Donaldosn	DOC
2	25CN -060	QE08	1M2AC07C3YM003468	February 20, 2003	Queens Gabrielli	55 256	5 207	Donaldosn	DOC
3	25CN -091	0E08	1M2AC07C3YM003499	March 11, 2003	Queens Gabrielli	52 243	1 965	Donaldosn	DOC
4	25CN -100	0E12	1M2AC07C0YM003508	February 20, 2003	Queens Gabrielli	31 776	4 839	Donaldosn	DOC
5	25CN -103	0E08	1M2AC07C0YM003511	March 26, 2003	Queens Gabrielli	54 261	5 300	Donaldosn	DOC
5	25CN -146	QE00	1M2AC07C7VM003554	March 31, 2003	Queens Cabrielli	56 520	5,000	Donaldosn	DOC
7	25CN 169		1M2AC07C6YM003534	Echruce 20, 2002	Queens Gabrielli	54,522	3,400	Donaldoon	DOC
/	25CN -100		1M2AC07C01W003576	April 1, 2002	Queens Gabrielli	19 200	4,002	Donaldoon	DOC
0	25CN -207		1M2AC07C1110003015	April 1, 2003	Queens Gabrielli	40,299	4,304	Donaldoon	DOC
9	25CN -219		1M2AC07C81W003627	February 26, 2003	Queens Gabrielli	30,301	3,520	Donaldosn	DOC
10	25CN -220	QE11	1W2AC07CA1W003628	Iviarch 6, 2003	Queens Gabrielli	45,015	4,511	Donaldosh	DOC
11	25CN -291	QE13	1M2AC07C01M003699	February 24, 2003	Queens Gabrielli	38,526	4,140	Donaidosn	DOC
12	25CN -310	BXW04	1M2AC07C0YM003718	April 10, 2002	Bronx Gabrielli	7,306	1,456	Donaldosn	DOC
13	25CN -327	BXW02	1M2AC07C0YM003735	December 6, 2001	Bronx Gabrielli	5,331	1,179	Donaldosn	DOC
14	25CN -349	QE13	1M2AC07CXYM003757	February 21, 2003	Queens Gabrielli	41,827	4,515	Donaldosn	DOC
15	25CN -361	BXW03	1M2AC07C6YM003769	December 4, 2001	Bronx Gabrielli	5,096	1,011	Donaldosn	DOC
16	25CN -374	BXW02	1M2AC07C9YM003782	December 4, 2001	Bronx Gabrielli	5,370	1,273	Donaldosn	DOC
17	25CN -425	BXW01	1M2AC07C31M003833	December 4, 2001	Bronx Gabrielli	6,948	1,699	Donaldosn	DOC
18	25CN -558	QE11	1M2AC07C01M003966	March 6, 2003	Queens Gabrielli	30,375	2,820	Donaldosn	DOC
19	25CN -581	BXW04	1M2AC07C11M003989	April 12, 2002	Bronx Gabrielli	4,311	806	Donaldosn	DOC
20	25CN -588	QE11	1M2AC07C91M003996	March 5, 2003	Queens Gabrielli	31,717	2,673	Donaldosn	DOC
21	25CN -595	BXW02	1M2AC07C01M004003	December 6, 2001	Bronx Gabrielli	2,334	501	Donaldosn	DOC
22	25CN -609	BXW03	1M2AC07C71M004239	December 5, 2001	Bronx Gabrielli	2,602	418	Donaldosn	DOC
23	25CN -612	QE12	1M2AC07C71M004242	March 7, 2003	Queens Gabrielli	46,582	3,506	Donaldosn	DOC
24	25CN -622	BXW04	1M2AC07C22M005722	April 22, 2002	Bronx Gabrielli	4,170	697	Donaldosn	DOC
25	25CN -638	QE08	1M2AC07C31M004268	February 20, 2003	Queens Gabrielli	36,411	2,862	Donaldosn	DOC
26	25CN -654	BXW01	1M2AC07C11M004320	December 5, 2001	Bronx Gabrielli	2,084	519	Donaldosn	DOC
27	25CN -655	QE08	1M2AC07C31M004285	April 1, 2003	Queens Gabrielli	41.555	3.310	Donaldosn	DOC
28	25CN -657	BXW03	1M2AC07C71M004287	December 6, 2001	Bronx Gabrielli	1.682	221	Donaldosn	DOC
29	25CN -658	QE07	1M2AC07C91M004288	February 21, 2003	Queens Gabrielli	23,987	2.566	Donaldosn	DOC
30	25CN -659	BXW03	1M2AC07C31M004321	December 7, 2001	Bronx Gabrielli	1.876	261	Donaldosn	DOC
31	25CN -663	BXW04	1M2AC07C11M004303	April 26, 2002	Bronx Gabrielli	4,279	737	Donaldosn	DOC
32	25CN -668	BXW02	1M2AC07C31M004299	December 11, 2001	Bronx Gabrielli	2,144	408	Donaldosn	DOC
33	25CN -669	BXW03	1M2AC07C91M004310	December 10, 2001	Bronx Gabrielli	2 150	369	Donaldosn	DOC
34	25CN -670	BXW01	1M2AC07C01M004311	December 6, 2001	Bronx Gabrielli	1 629	66	Donaldosn	DOC
35	25CN -672	0E07	1M2AC07C81M004329	April 1 2003	Queens Gabrielli	24 189	2 820	Donaldosn	DOC
36	25CN -680	BXW04	1M2AC07C61M004295	April 24, 2002	Brony Gabrielli	4 613	979	Donaldosn	DOC
37	25CN -689	BXW04	1M2AC07C41M004344	December 7, 2002	Brony Gabrielli	1 903	336	Donaldosn	DOC
38	25CN -703	BXW01	1M2AC07C41M004358	December 7, 2001	Brony Gabrielli	2 331	510	Donaldosn	DOC
30	250N -703	BXW01	1M2AC07C61M004362	December 10, 2001	Bronx Cabrielli	2,001	414	Donaldosn	DOC
40	25CN -707	BXW03	1M2AC07C12M005663	December 11, 2001	Brony Gabrielli	1 038	205	Donaldosn	DOC
40	25CN -717	BXW03	1M2AC07C52M005665	December 8, 2001	Brony Cabrielli	2 151	233	Donaldosn	DOC
41	250N -719	BYWOA	1M2AC07C72M005666	May 3, 2002	Brony Cobrielli	2,101	704	Donaldoon	000
42	250N -725	BXW04	1M2AC07C02M005671	Ividy 3, 2002	Brony Cabrielli	3,943	/ 04	Donaldosn	DOC
43	200N-720		1M2AC07C02M005670	December 12, 2001	Brony Cobrielli	2 105	410	Donaldoon	DOC
44	25UN -726		1WIZAGU/GZZIVIUU56/2	December 12, 2001	DIULIX GADITIEIII	2,105	342	Donaldosh	
45	25UN -727	BXWU1	TMZAC074C42M005673	December 12, 2001	Bronx Gabrielli	2,078	439	Donaidosn	DOC
46	25CN -728	BXW02	1M2AC07C62M005674	December 12, 2001	Bronx Gabrielli	2,203	482	Donaldosn	DOC
47	25CN -732	BXW04	1M2AC07C32M005678	April 25, 2002	Bronx Gabrielli	3,704	747	Donaldosn	DOC
48	25CN -735	BXW04	1M2AC07C32M005681	May 1, 2002	Bronx Gabrielli	2,990	555	Donaldosn	DOC
49	25CN -738	BXW04	1M2AC07C92M005684	May 1, 2002	Bronx Gabrielli	4,638	929	Donaldosn	DOC
50	25CN -739	BXW04	1M2AC07C02M005685	May 8, 2002	Bronx Gabrielli	4,795	927	Donaldosn	DOC
51	25CN -745	BXW01	1M2AC07C62M005691	December 13, 2001	Bronx Gabrielli	1,772	328	Donaldosn	DOC
52	25CN -746	BXW02	1M2AC07C82M005692	December 13, 2001	Bronx Gabrielli	2,640	504	Donaldosn	DOC
53	25CN -754	BXW03	1M2AC07C32M005700	December 13, 2001	Bronx Gabrielli	1,737	251	Donaldosn	DOC
54	25CN -762	BXW04	1M2AC07C82M005708	November 6, 2001	DSNY CRS	1,315	116	Donaldosn	DOC
55	25CU -221	QE11	1M2AC07C72M005943	March 5, 2003	Queens Gabrielli	14,364	1,492	Donaldosn	DOC

MACK RETROFIT PROGRAM

DSNY DOC Installations = 55 Units

MACK RETROFIT PROGRAM

DSNY DPF Installations = 28 Units

					Installation	Vehicle Miles at	Vehicle Hours		Emissions
No.	Vehicle ID No.	Depot Location	VIN	Installation Date	Doplor	Time of	at Time of	ECT Manufacturer	Tochnology
					Dealei	Installation	Installation		rechnology
1	25CU -101	ME11	1M2AC07C82M005823	July 13, 2004	CRS	21,069	3,099	Engelhard DPX	DPF
2	25CU -205	ME11	1M2AC07C92M005927	June 29, 2004	CRS	22,925	2,853	Engelhard DPX	DPF
3	25CU -211	ME11	1M2AC07C42M005933	June 15, 2004	CRS	22,877	2,936	Engelhard DPX	DPF
4	25CW -025	BXW01	1M2AC07C13M007088	April 11, 2003	CRS	3,651	872	Engelhard DPX	DPF
5	25CW -114	BN02	1M2AC07C03M007177	February 14, 2005	CRS	15,018	3,850	Engelhard DPX	DPF
6	25CW -118	R03	1M2AC07C23M007181	February 5, 2005	CRS	15,575	2,121	Engelhard DPX	DPF
7	25CW -150	ME03	1M2AC07C03M007213	January 25, 2005	CRS	21,254	2,854	Engelhard DPX	DPF
8	25CW -160	ME03	1M2AC07C33M007223	January 19, 2005	CRS	22,675	22	Engelhard DPX	DPF
9	25CW -170	MW01	1M2AC07C63M007233	January 20, 2005	CRS	15,415	2,744	Engelhard DPX	DPF
10	25CW -176	ME11	1M2AC07C73M007239	April 11, 2003	CRS	1,226	110	Engelhard DPX	DPF
11	25CW -181	ME11	1M2AC07C03M007244	May 10, 2004	CRS	7,812	1,106	Engelhard DPX	DPF
12	25CW -184	BN07	1M2AC07C63M007247	January 11, 2005	CRS	8,005	2,973	Engelhard DPX	DPF
13	25CW -185	ME11	1M2AC07C83M007248	May 27, 2004	CRS	6,717	993	Engelhard DPX	DPF
14	25CW -189	BN07	1M2AC07CX3M007252	January 13, 2005	CRS	10,136	3,044	Engelhard DPX	DPF
15	25CW -200	ME11	1M2AC07C43M007263	June 8, 2004	CRS	19,748	2,159	Engelhard DPX	DPF
16	25CW -206	BN07	1M2AC07C53M007269	January 24, 2005	CRS	7,735	3,240	Engelhard DPX	DPF
17	25CW -529	MW01	1M2AC07C54M009072	February 2, 2005	CRS	7,460	1,032	Engelhard DPX	DPF
18	25CW -530	MW01	1M2AC07C74M009073	February 9, 2005	CRS	5,203	778	Engelhard DPX	DPF
19	25CW -557	R01	1M2AC07C64M009100	January 11, 2005	CRS	4,036	561	Engelhard DPX	DPF
20	25CW -715	ME11	1M2AC07C94M009656	February 3, 2005	CRS	5,429	620	Engelhard DPX	DPF
21	25CW -733	ME11	1M2AC07C04M009674	March 16, 2005	CRS	7,759	890	Engelhard DPX	DPF
22	25CW -736	R01	1M2AC07C64M009677	January 11, 2005	CRS	4,141	513	Engelhard DPX	DPF
23	25CW -738	MW11	1M2AC07CX4M009679	February 24, 2005	CRS	6,219	698	Engelhard DPX	DPF
24	25CW -750	ME11	1M2AC07C04M009691	March 23, 2005	CRS	8,102	978	Engelhard DPX	DPF
25	25CW -753	ME11	1M2AC07C64M009694	February 17, 2005	CRS	5,651	624	Engelhard DPX	DPF
26	25CW -784	BN02	1M2AC07C24M009725	January 13, 2005	CRS	8,024	2,977	Engelhard DPX	DPF
27	25CW -792	BN02	1M2AC07C14M009733	January 21, 2005	CRS	1,400	175	Engelhard DPX	DPF
28	25CW -800	BN02	1M2AC07C04M009741	February 9, 2005	CRS	19,566	309	Engelhard DPX	DPF

UPS DPF Installations = 3 Units All DPFs, Engelhard DPX

No.	Vehicle ID No.	Depot Location	VIN	Installation		First F	ailure	Second failure		
				Date	Miles	Date	Miles	Date	Miles	
1	265777	Stratford	25214	June-03	216,545	January-04	279,000	May-04	324,000	
2	265778	Stratford	25215	January-04	243,000	May-04	280,000	not in:	stalled	
3	265780	Stratford	25217	January-04	307,000	April-04	339,000	not in:	stalled	

MACK RETROFIT PROGRAM DSNY SCR+DPF Installations = 2 Units

No.	Vehicle ID No.	Depot Location	VIN	Installation Date	Installation Dealer	Vehicle Miles at Time of Installation	Vehicle Hours at Time of Installation	ECT Manufacturer	Emissions Technology
1	25CI -401	BXE11	1M2AC07C12M006618	January 30, 2002	Mack	8	Not Available	Argillon SINOx	SCR
	2000 401			January 1, 2004	CRS	14,236	1,745	Engelhard DPX	DPF
	25CU -402	ME11	1M2AC07C62M007019	February 21, 2002	Mack	5	Not Available	Argillon SINOx	SCR
2				January 6, 2003	CRS	8,437	1,074	Engelhard DPX	DPF
			•		•		•		

Truck no. 25CU-402 was emissions tested at WVU, June '03 & June '04

Appendix E, Table of SCR Installations, DSNY & UPS Fleets

MACK RETROFIT PROGRAM UPS & DSNY SCR Installations = 10 Units

SCR Systems -- Initial Installation

				Installatio	n	Final Accou	nting		Accumulated
No.	Fleet ID	VIN	Unit	Date	Miles	Date	Miles		Miles
1.	UPS	25211	265774	February 1, 2002	35,960	October 30, 2004	481,000	estimated	445,040
2.	UPS	25212	265775	January 29, 2002	12,577	October 30, 2004	299,500		286,923
3.	UPS	25213	265776	March 18, 2002	39,326	October 30, 2004	311,954		272,628
4.	UPS	25214	265777	March 19, 2002	44,889	October 30, 2004	385,278		340,389
5.	UPS	25215	265778	April 1, 2002	47,373	October 30, 2004	342,880		295,507
6.	UPS	25216	265779	February 21, 2002	38,016	October 30, 2004	267,010		228,994
7.	UPS	25217	265780	April 1, 2002	53,320	October 30, 2004	419,000	estimated	365,680
8.	UPS	25218	265781	February 27, 2002	44,586	October 30, 2004	415,085		370,499
9.	DSNY	1M2AC07C12M006618	25CU-401	January 30, 2002	8	October 30, 2004	20,000	estimated	19,992
10.	DSNY	1M2AC07C62M007019	25CU-402	February 21, 2002	5	October 30, 2004	19,500	estimated	19,495
									2.645.147

SCR Systems -- After Commissioning & Fully Functional

				SCR Working Pr	operly	Final Accou	nting		Accumulated
No.	Fleet ID	VIN	Unit	Date	miles	Date	Miles		Miles
1.	UPS	25211	265774	November 2, 2002	143,065	October 30, 2004	481,000	estimated	337,935
2.	UPS	25212	265775	August 8, 2002	54,986	October 30, 2004	299,500		244,514
3.	UPS	25213	265776	November 2, 2002	101,252	October 30, 2004	311,954		210,702
4.	UPS	25214	265777	November 2, 2002	125,031	October 30, 2004	385,278		260,247
5.	UPS	25215	265778	September 17, 2002	95,150	October 30, 2004	342,880		247,730
6.	UPS	25216	265779	September 17, 2002	92,266	October 30, 2004	267,010		174,744
7.	UPS	25217	265780	August 9, 2002	107,479	October 30, 2004	419,000	estimated	311,521
8.	UPS	25218	265781	September 18, 2002	139,157	October 30, 2004	415,085		275,928
9.	DSNY	1M2AC07C12M006618	25CU-401	September 20, 2002	1,501	October 30, 2004	20,000	estimated	18,499
10.	DSNY	1M2AC07C62M007019	25CU-402	September 20, 2002	1,446	October 30, 2004	19,500	estimated	18,054
									2,099,874