Emission Sensitivity to Non-homogenous Fuel Decomposition

Paul DesJardin, Joseph Mollendorf
Joe Richter, Josh Weisburger
Brian Bojko, Ted Nalesnik

Mark Odell
Dale Furman

Mechanical and Aerospace Engineering

Econoburn

Wood Combustion Symposium
November 30, 2016

Work supported by the New York State Energy and Research Development Authority
Motivation

• Biomass stoves and boilers are a significant source of pollution in rural wood burning areas of NY, NH, VT and ME
 – Release of PMs, CO, NO, etc.

• Testing standards
 – Method 28 wood-fired hydronic heaters
 – BNL partial thermal storage (PTS) method

• Fuel does not burn uniformly; simultaneous drying, pyrolysis, charcoal formation/oxidation, at varied rates

• To accurately characterize efficiency and emissions it is important to know the time dependent composition of the fuel

• **Goal**: Understand source of emissions and define reduction strategies
Experimental Setup: Boiler
Experimental Setup: Fuel

- BIOBLOCK® fuel source to reduce run-to-run variability
- 100% hardwood – red oak (CH$_{1.7}$O$_{0.72}$N$_{0.001}$)
- Consistent shape, size, moisture content ~ 8.3%
- Repeatable loading configuration
Flame Visualization

Upper Chamber

Lower Chamber
High Speed Video

- Slowed down 300 times
- Approximate flow velocity (10 m/s)
Baseline Emission Diagnostics

Testo model 330-2LL (CO, NO and O$_2$)

Instrument Cluster tube

Bosch O$_2$ Sensor (correct for water condensation)
• Testo measures O\textsubscript{2}, CO & NO – all other species are inferred
• CO\textsubscript{2} and H\textsubscript{2}O are important major species of combustion and are primary indicators of combustion efficiency
• CO\textsubscript{2}, H\textsubscript{2}O are inferred using a chemical balance:

 \[
 \text{fuel} + \text{air} \rightarrow \text{products}
 \]

• **Note:** most (all?) current inference methods (incorrectly) assume constant fuel composition
Inferring CO$_2$ and H$_2$O

Constant Fuel Formulation (CFF)

$$C_wH_xO_yN_z + a(O_2 + 3.76N_2 + \gamma H_2O) + bH_2O \rightarrow cH_2O + dCO + eNO + fCO_2 + gN_2 + hO_2$$

Fuel + Air + Wood Moisture → Exhaust Species

- Constant w, x, y, z
- γ defined by humidity gauge at blower inlet
- b defined by fuel moisture measurement (~8%)

7 unknowns for a, c, d, e, f, g and h
- 4 atom balances (C,H,O,N)
- 3 measurements of CO, NO, O$_2$
Three modes of burning

- **Early** = fuel pyrolysis with large flames (first CO peak)
- **Intermediate** = pyrolysis and char formation
- **Late** = charcoal oxidation (second CO peak)
<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kanury, A. et al.</td>
<td>Thermal decomposition kinetics of wood pyrolysis</td>
<td>1972</td>
</tr>
<tr>
<td>DiBlasi, C.</td>
<td>Processes of flames spreading over the surface of charring fuels: effects of the solid thickness</td>
<td>1994</td>
</tr>
<tr>
<td>Saastamoinen, J.J. et al.</td>
<td>Propagation of the ignition front in beds of wood particles</td>
<td>2000</td>
</tr>
<tr>
<td>DiBlasi, C. et al.</td>
<td>Pyrolytic behavior and products of some wood varieties</td>
<td>2001</td>
</tr>
<tr>
<td>Glarborg, P. et al.</td>
<td>Fuel nitrogen conversion in solid fuel fired systems</td>
<td>2002</td>
</tr>
<tr>
<td>Galgano, A. et al.</td>
<td>Modeling the propagation of drying and decomposition fronts in wood</td>
<td>2004</td>
</tr>
<tr>
<td>Fang, M.X. et al.</td>
<td>Kinetic study on pyrolysis and combustion of wood under different oxygen concentrations by using TG-FTIR analysis</td>
<td>2006</td>
</tr>
<tr>
<td>Liu, Q. et al.</td>
<td>Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis</td>
<td>2008</td>
</tr>
</tbody>
</table>
Inferring CO$_2$ and H$_2$O

Variable Fuel Formulation (VFF) – x, y, z are unknowns

\[C_1H_xO_yN_z + a(O_2 + 3.76N_2 + \gamma H_2O) \Rightarrow cH_2O + dCO + eNO + fCO_2 + gN_2 + hO_2 \]

Effective Fuel + **Air** \(\Rightarrow\) **Exhaust Species**

Advantages:
- fuel composition is NOT specified
- fuel moisture content is NOT specified
10 unknowns for a, c, d, e, f, g, h plus x, y, z,
- 4 atom balances (C,H,O,N)
- 3 measurements of CO, NO, O$_2$

= 3 more constraints (or measurements) required
- assume NO comes from fuel (e=z and g=3.76a)
= 2 more constraints (or measurements) required

1) H/O ratio = 2 in the fuel
2) Measurements of fuel mass loss and air flow rates
Measuring Fuel Mass Loss and Air Flow Rates

Real-Time Fuel Burn Rate Monitor

Airflow measured using calibrated Bosch meter with ASME venturi
Validation using TDLAS

TDLAS = Tunable Diode Laser Absorption Spectroscopy

Top-Down View

Catch Flue Pitch
Gases absorb light at different wavelengths

Calculate properties of gas from shape of absorption features
TDLAS Experimental Setup
TDLAS Experimental Setup – Pitch Side

- Mirror
- Periscope
- CaF$_2$ Beamsplitter
- Detector
- Germanium Etalon
- Laser
Results: Flue CO$_2$ and H$_2$O emissions

- VFF and TDLAS match !!!

X_{CO_2} vs. time

X_{H_2O} vs. time

TDLAS
VFF-mean
CFF-mean
Consequences: Time Dependent Fuel Comp. & HHV

- New inference allows for the prediction of the time dependent fuel composition and instantaneous heating value

* $HHV = (33.5[C\%] + 142.3[H\%] - 15.4[O\%] - 14.5[N\%]) \times 10^{-2}$

Consequences: Instantaneous Thermal Efficiency
Consequences: Fuel Sensitivity Interpretation

- Fuel:
 - Red Oak (BIOBLOCKS®).............. $C_1H_{1.7}O_{0.72}N_{0.001}$
 - Cherry cord-wood.................... Comparable to oak
 - Pine 2x4 (no bark) $C_1H_{1.7}O_{0.83}$

- Comparable H/C and O/C ratios among various wood species

- Lower N/C ratio observed with pine due to absence of nitrogen rich bark
Consequences: CFD Modeling

- Time varying fuel for CFD combustion models
 - Prediction of spatial and time dependent temperature and species fields
- Explore CO reduction methods for lower chamber
Consequences: Modeling

- Agrees fairly well with experimental data

O₂

CO₂

H₂O

CO
Summary and Future Directions

• Gas emissions are strongly dependent on non-homogeneous fuel decomposition

• New emission inference method developed
 – Utilizes fuel mass loss rate and air flow measurements
 – Assumes H/O molar ratio = 2 in fuel

• Validated new method using TDLAS

• New insight on the operation of two-stage boilers
 – Instantaneous caloric value and elemental composition of the fuel
 – Instantaneous thermal efficiency
 – Meaningful time dependent fuel input to CFD models

• Potential Future Directions
 – Relax H/O = 2 assumption & directly measure H₂O and CO₂ via miniaturization of TDLAS or some other inexpensive off-the-shelf instrument
 – Optimize boiler operation using improved control logic using instantaneous thermal efficiency
 – Real time monitoring
Experiments / Diagnostics

Modeling

Thank you! … Questions?