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ABSTRACT

Back trajectories have been calculated (8 per tmythe five-year period including 1998
through 2002 using the HY-SPLIT modeling systemlférEastern sites including 10
rural locations near Class 1 areas subject to ERAonal Haze Rule and 7 urban
location which have annual average RMoncentrations above or near the National
Ambient Air Quality Standard (NAAQS). The backj&ctories have been clustered
based on 3-dimensional similarity to identify thregiominant meteorological pathways
influencing each site. Trajectories have also lzssociated with the nearest temporal
value of 24-hr average concentration of 2dnd IMPROVE SG values measured at
or near each site. By calculating and summingagetiveighted regional contributions to
each cluster, results are compared with taggedatitiee REMSAD model and provide
an independent check on contribution assessmewgtoged through both techniques.

INTRODUCTION

The 1999 Regional Haze Rule (RHR) contains requeremfor a site-specific pollution
apportionment as part of each mandatory FederakClarea’s long-term emissions
management strategy. A variety of techniques haen explored for conducting such
pollution apportionments, but tagged chemical fpansmodeling is one of the few
techniques which provide quantitative assessméniglividual state or regional
contributions to ambient concentrations. Givenithportance of accurate pollution
apportionment assessments, it is highly desirabl&ave independent techniques provide
confirmation of transport model results.

Traditional trajectory analyses that associaterabi@nt measurement of air quality with
the geographical region upwind prior to the obsegowaare limited in that they
demonstrate the relationship between ambient ailitguand the integrated path along
the length of a back trajectory. It is difficudt distinguish the contribution of a specific
point along a single back trajectory from the ciimittion of other points along that path.
Large numbers of back trajectories have been usadrariety of ways to try to
“triangulate” by taking advantage of the variatinometeorology and paths that an
ensemble of back trajectories offérsCombining results from multiple receptor sites
offers a more robust method of triangulation ana yiald very specific source regions



associated with unique chemical signatures availaiith source apportionment
techniques.

Moody et al® following methods of Dorling,have applied the Patterns in Atmospheric
Transport History (PATH) clustering algorithm, leawge numbers of back trajectories in
order to group trajectories by three-dimensionmailgirity. Calculation of average
pollution levels corresponding to the members olluater of back trajectories of similar
three-dimensional structure provides a robust tiegctenof associating air pollutants with
typical meteorological pathways,but remains limited in its ability to distinguish
individual points along an atmospheric pathway ki by a cluster of back trajectories.

The definition of an individual cluster of backjeetories in PATH analysis is dependent
on a subjective choice of the “Radius of Proximiityhis threshold defines the limiting
difference between the three-dimensional coordsatéwo back trajectories and
determines if they are in the same cluster or diffeclusters. Selection of a smaller
radius of proximity, in effect, will split clusterato component sub-clusters. Thus in the
limiting case (radius of proximity = 0) the analyseverts to a traditional trajectory
analysis with each trajectory representing its aWster. In this sense, PATH analysis
offers a trade-off between uncertainty and findesstructure of a trajectory analysis. By
using a smaller radius of proximity — and thus amiarger number of clusters (100-200
clusters representing the 10,000+ back trajectéoiesach site over the 5-year period) —
we have applied the PATH techniques to developivelsg well resolved (spatially)
trajectory clusters. These have been weightedbytpn measurements and attributed
to geographic areas.

An independent method of associating emissions éathnwind air quality impacts
involves the use of chemical transport modelsparce modeling, rather than the
receptor based approaches used in trajectory analysise Wermuse a large database of
back trajectories and corresponding air pollutiGasurements to develop metrics related
to Wishinski and Poirot’s “incremental probabilitytwhich is reflective of the increase
in probability — relative to the everyday probalil of a geographic region being
associated with a predominant meteorological pagifaasulfate transport (as opposed
to a source region itself). Here we use theseiosatr two ways. First, a sulfate-
weighted probability is used to apportion obserselfate as an independent check on
source modeling results that have identified ssakecific contributions of elevated point
emission sources to sulfate formation. The wemjipi@bability developed here is then
compared to other incremental probability metracbetter understand how this
technique compares to more traditional methods.

METHODS

The Hybrid Single Particle Lagrangian Intregratedjactory (HY-SPLIT) modéf*?

was used to calculate back trajectories for 1 sitehe Northeast U.S. The locations
correspond to Class | areas subject to the RHRetlsaw/ several sites where potential
nonattainment issues with the PMNAAQS warranted analysis. Results are presented



here for Acadia National Park, Maine, Lye Brook téitness Area, Vermont, and
Brigantine Wilderness Area, New Jersey.

Back trajectories were calculated eight times grfdr starting heights of 200, 500 and
1000m above ground level using two different sétmeteorological wind fields for the
five year period 1998-2002. NOAA ARL archives arzalgt meteorological products for
use with the HYSPLIT model including the Eta Datssinilation System (EDAS) wind
fields, which cover North America with an 80 km 8akresolution and are based on 3-
hourly variational analyses as well as wind fidbdsed on the final run of the Global
Data Assimilation System (FNL) which has 6-houdynporal and 190 km horizontal
resolution over the entire glob&.

Clusters were calculated using the PATH apprda@hajectories are grouped based on
Euclidean distance between three-dimensional naathtoordinates of the respective
trajectories. Clusters are formed by finding theritral” trajectory which has the greatest
number of neighboring trajectories within a subjesy selected “radius of proximity.”
There is a trade-off between the “resolution” ofieas modes of atmospheric transport
identified by PATH and the number of clusters. Whising a small radius of proximity
as the threshold criterion for membership in atelusesults in generally more defined
clusters that are easily identifiable with a speafass of meteorological transport (e.qg.
fast flow from the Northwest, shallow coastal flaatg.), it also results in a large number
of clusters at each site.

In order to better define specific meteorologicathpvays that might be associated with
pollutant transport, we used a radius of proximity (this is a unit-less value since the
coordinates have all been normalized prior to eliisg). This typically resulted in 100-
200 clusters at each site. Figure 1 shows typietkorological patterns among the most
frequent clusters calculated for Brigantine Wildz=ss Area, New Jersey. Results are
plotted as a residence-time density for each alusteich is a measure of the total time
spent in a particular grid cell. Clusters in tlgufe have been associated with specific
atmospheric “modes” or meteorological patterns #matcommonly observed at multiple
sites. The modes pictured correspond to Northwast flow (NWF), Southwest Interior
(SW1), Southwest Coastal (SWC), Southeast Mariti8teM), Upper Midwest (UMW),
and Northerly flow (N).

Trajectories were then associated with corresp@nohianitoring data measured as close
in time as possible to the “start” time of the baelectory calculation. Associations
were made for P, Ozone, and all PM components routinely measusquha of the
IMPROVE program, although results are presented tely for 24-hr integrated sulfate
ion mass.



Figure 1. Residence-time density for 6 back trajectorgidts observed at Brigantine
Wilderness Area, New Jersey between 1998 and 2002.
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IDENTIFYING INCREASED PROBABILITY OF SULFATE
TRANSPORT PATHWAYS

The residence-time densities and correspondingtsutheasurements can be combined
in a number of ways to yield various metrics whicly help identify specific

meteorological pathways that are more likely thrers to contribute to sulfate transport
to a specific receptor site.

One method begins with residence-time probabiliidsch are a measure of the time
spent in a specific grid cell relative to the tdtale spent in any grid celf. When
calculated for all trajectories considered in aalgsis, this defines theveryday
probability as shown in Equation 1.

Equation 1. Everyday Residence-time Probability
— (N
(")

n, = totalendpointpassinghroughgridcelli, j
N = totalendpointpassinghroughall grid cellsfrom all trajectores
These residence time probabilities can be calalifmieany subset of trajectories, and

have been traditionally applied to a subset comedjmg to high concentrations of
pollutants resulting in high-day probability as shown in Equation 2.



Equation 2. High Day Residence-time Probability
_ m/
=)

m, = totalhighdayendpointpassinghroughgrid celli, j
M = totalhighdayendpointgpassinghroughall grid cellsfrom highday trajetories

The difference between these two sets of probasiliias been referred to as the
incremental probability and identifies areas where the prolitgtof poor air quality is
greater than the average probability associated tytical meteorological patterns (see
equation 3).

Equation 3. Incremental Probability
IP=HP-EP

In order to take advantage of the PATH analysis, h&w metrics have been derived
using the concept of incremental probability toestigate meteorological pathways that
influence sulfate transport. Firstclaistered incremental probability is defined by
subtracting the everyday probability from a sunthaf worst day clusters. Rather than
choosing a subset of the trajectories, we havetsele subset of the clusters which are
chosen based on their associated average suliatertoations. Clusters are ranked in
order of their associated average sulfate valuechrstiers are summed until 20 percent
of the overall trajectory population are includekhose clusters define the worst day
conditions and their sum represents the worst dalygbility which can be applied in a
modified incremental probability as shown in eqoat.

Equation 4. Clustered Incremental Probability
CIP=) RR -EP
kOK
K = Subsebf clustereencompassig 20% worstpollutiondays

RP, = Residence time probabiliy for clusterk

Finally, we present the weighted-cluster probapiliEach PATH-derived cluster’s
residence-time probability is weighted by the ageraulfate value for any measurements
corresponding to a trajectory which is a membehat cluster. The weighted residence-
time probability is summed ovetl clusters calculated for a site. The everyday
probability is subtracted from the sum of weightdalster probabilities to identify areas

of increased (or in the case of negative valuesedsed) probability of being associated
with a meteorological pathway for pollutant trandp&quation 5 presents the weighted-
cluster probability.



Equation 5. Weighted-Cluster Probability
L P— P—
WCP = %(Z(C)i [RP -C EEP]

i=1
L = totalnumberof clustersalculated
(E)i = Averagepollutantconcentraon (basecdn observatiasassociateavith clusteri)

C = Averagepollutantconcentraon (basecnall days)

Here, (C); represents the average sulfate value for alldtajes within cluster i which
had an associated $¥Omeasurement (roughly 25-30 percent, given 1-imBshmpling
schedules). By weighting the residence-time podityafor cluster i by this quantity, we
are implicitly assuming that similar trajectorieé® (traversing similar source regions
under similar meteorological conditions) will hasienilar resulting ambient
concentrations at the receptor. The quanfity (epresents the average value for sulfate
measurements associated with trajectories in attyeoflusters and acts to normalize the
sum of the residence-time probabilities.

Figures 2 through 4 show the results of the weHataster probability calculation for
sulfate at Acadia National Park, Maine, Brigantigderness Area, New Jersey and Lye
Brook Wilderness Area, Vermont.

Figure 2. Areas of increased (yellow/red) or decreasednyae) probability of being
associated with sulfate transport to Acadia Nati®zak, Maine.
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Figure 3. Areas of increased (yellow/red) or decreasednfyae) probability of being
associated with sulfate transport to Lye Brook \&fittess Area, Vermont.
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Figure 4. Areas of increased (yellow/red) or decreasedrnjae) probability of being
associated with sulfate transport to Brigantinedéfihess Area, New Jersey.
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By averaging the weighted-cluster probability feelitross sites, Figure 5 demonstrates
that the regions most likely to be associated witlfate transport to Lye Brook, Acadia

and Brigantine include Virginia, Maryland and East&annsylvania followed by the
Ohio River Valley.
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Figure 5. weighted-cluster probability showing areas of@&ased (yellow/red) or

decreased (cyan/blue) probability of being assediatith sulfate transport to Acadia,
Brigantine, and Lye Brook.
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In trying to interpret this new metric, it is uskfa contrast these results against the
alternative formulations in order to better undamsthow the clusters influence the
results. Figures 6 shows the three site averag#apility fields for the incremental
probability as well as the clustered incrementabpbility, as defined in equations 3 and
4 above, for the twenty percent worst sulfate value

Figure 6. Areas of increased (yellow/red) or decreasednjae) probability of being
associated with sulfate transport to Acadia, Brigen and Lye Brook as measured by
incremental probability (left) and clustered inceartal probability (right).
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One obvious difference between the metrics showigimes 5 and 6 is that the
incremental probability has values closer to zeemteither of the other two metrics
which may be a function of the sample size for emtdlysis. Whereas the cluster
techniques use all trajectories in the sampleintrmental probability is limited to the




trajectories for which a corresponding measureragists and thus uses only about 25-30
percent of the trajectories. From a qualitativespective, the three metrics are quite
similar showing significant sulfate transport (anannual average basis) along the
Eastern corridor from Virginia and North Carolinathrough Maryland and Eastern
Pennsylvania. A second area of influence alongahie® River valley between Ohio,
Pennsylvania and West Virginia may play a role a.w

As noted previously, the PATH-derived clusters asslociated techniques may not be
appropriate for distinguishingpurce regions from regions associated with sulfate
transport (i.e. the integrated path from sourceteptor). This may explain why the
cluster-based techniques show greater influentdgeimegion between Albany, NY and
Long Island, NY which is closer to the Lye BrookdaBrigantine source regions.
However, it is difficult to discern given the difence in statistical samples between the
techniques as discussed above.

COMPARISON OF SOURCE AND RECEPTOR TECHNIQUESFOR SULFATE
CONTRIBUTION

Trajectory cluster technigues were used to proaidendependent confirmation of
REMSAD (v. 7.10 with source tagging) calculatedtciwtions of various source
regions to ambient concentration of sulfate ioreaeptor sites in the Northeast U.S.

1996 meteorology and a 2001 “proxy” inventory depeld by the U.S. EPA for analysis
of the 2003 Clear Skies Act were used to generateal average contributions from
tagged elevated point source emissions of iB@1 eastern states. The elevated point
source emissions were grouped by state allowinghiindividual contribution from

each state’s elevated point sources to be indillidtracked in the model. The picture of
each state’s total contribution to RMs incomplete because area and mobile sources of
SO, were not included in these tags and other comperdriine particulate were not
included. However, this does give a good senskeofelative ranking of various states
point sources (>80% of the national S@ventory). State-specific contributions to
annual average sulfate concentrations are theredaakd grouped into quintiles.

Residence-times for the PATH derived clusters wleea broken down by state to
calculate the percent of each site’s weighted-elystobabilities that lay within a specific
state’s boundaries. That fraction gives a measieach state’s sulfate-weighted
residence time that is attributable to a giversditansport. It is important to note that the
average sulfate value derived for each clusteaset on only those members of the
cluster for which there is a corresponding measargmGiven the 1-in-3 day schedule
of the IMPROVE program, this means that the averap@sed on approximately one
third of the population within the cluster. Here assume that the distribution of
measurement days is random with respect to actualenitrations and that no bias is
incurred.



The result provides an indication of the state-ggecontribution to the sulfate weighted
residence-time for the most frequently occurringeusological patterns. These
contributions are ranked and grouped into quinsieslar to the REMSAD results.

Figures 7 through 9 show the results for the tvebéques with the states shaded black
representing the top quintile contributor, darkygm@presenting the second quintile,
medium gray representing the middle quintile, ligrdy representing the fourth quintile
and off-white for the bottom quintile. White stat@here not included in the REMSAD
tagging scheme and thus were not included in thiemg schemes.

Figure 7. Ranked contributions of states to ambient sulfatecentration at Acadia
National Park, Maine derived by REMSAD with soutagging (left) and weighted-
cluster probability derived by PATH (right).

Figure 8. Ranked contributions of states to ambient sulfatecentration at Lye Brook
Wilderness Area, Vermont derived by REMSAD with siutagging (left) and trajectory
clusters derived by PATH (right).




Figure 9. Ranked contributions of states to ambient sulfatecentration at Brigantine
Wilderness Area, New Jersey derived by REMSAD wihrce tagging (left) and
trajectory clusters derived by PATH (right).

In comparing these techniques, we recognize tihvagnghe nature of PATH derived
clusters, this approach is likely to give undueghéto nearby geographical areas simply
due to the inability of the technique to distinducontributions from specific locations
along an integrated trajectory path. In fact, thisorne out in the results which show a
bias toward contribution from nearby states retatvthe REMSAD calculated sulfate
contributions.

Nonetheless, given the similar patterns of contiiiouand the completely independent
methodology for deriving these results, they doegppo provide an important check on
source-based contribution techniques.

CONCLUSIONS

A large database of back trajectories and correfipgrair pollution measurements have
been used with trajectory cluster analysis tectesgo apportion observed sulfate mass
concentrations as an independent check on sourdelmg results. Both techniques
have identified state-specific contributions of,3mission sources to sulfate formation.
Results indicate that cluster-based trajectoryrtegles can provide a semi-quantitative
check on chemical transport model results, altharghater effort must be taken to
develop a tagged model run that incorporates agon sources of SOn order to
directly compare with receptor approaches.

Clusters have also been used here to develop settated to Wishinski and Poirot’s
“incremental probability*® which provides the relative increase in probapitit a
geographic region being associated with a predamimeteorological pathway
associated with pollutant transport (as opposeddource region itself).

This analysis demonstrates a potentially novel efagentifying regions that play a role
in pollutant transport (as opposed to regions whiely host source emissions).



Combined with meteorological information and souspgortionment model results, the
approach may yield a more comprehensive pictusmofce emissions and the
circumstances under which they are transportegeoific receptor sites.
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