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ABSTRACT 
Back trajectories have been calculated (8 per day) for the five-year period including 1998 
through 2002 using the HY-SPLIT modeling system for 17 Eastern sites including 10 
rural locations near Class 1 areas subject to EPA’s Regional Haze Rule and 7 urban 
location which have annual average PM2.5 concentrations above or near the National 
Ambient Air Quality Standard (NAAQS).   The back trajectories have been clustered 
based on 3-dimensional similarity to identify the predominant meteorological pathways 
influencing each site.  Trajectories have also been associated with the nearest temporal 
value of 24-hr average concentration of PM2.5 and IMPROVE SO4

2- values measured at 
or near each site.  By calculating and summing sulfate-weighted regional contributions to 
each cluster, results are compared with tagged runs of the REMSAD model and provide 
an independent check on contribution assessments developed through both techniques. 
 
 
INTRODUCTION 
 
The 1999 Regional Haze Rule (RHR) contains requirements for a site-specific pollution 
apportionment as part of each mandatory Federal Class I area’s long-term emissions 
management strategy.  A variety of techniques have been explored for conducting such 
pollution apportionments, but tagged chemical transport modeling is one of the few 
techniques which provide quantitative assessments of individual state or regional 
contributions to ambient concentrations.   Given the importance of accurate pollution 
apportionment assessments, it is highly desirable to have independent techniques provide 
confirmation of transport model results. 
 
Traditional trajectory analyses that associate an ambient measurement of air quality with 
the geographical region upwind prior to the observation are limited in that they 
demonstrate the relationship between ambient air quality and the integrated path along 
the length of a back trajectory.  It is difficult to distinguish the contribution of a specific 
point along a single back trajectory from the contribution of other points along that path.  
Large numbers of back trajectories have been used in a variety of ways to try to 
“triangulate” by taking advantage of the variation in meteorology and paths that an 
ensemble of back trajectories offers.1-5 Combining results from multiple receptor sites 
offers a more robust method of triangulation and can yield very specific source regions 



associated with unique chemical signatures available with source apportionment 
techniques. 
 
Moody et al.,6 following methods of Dorling,7 have applied the Patterns in Atmospheric 
Transport History (PATH) clustering algorithm,  to large numbers of back trajectories in 
order to group trajectories by three-dimensional similarity.  Calculation of average 
pollution levels corresponding to the members of a cluster of back trajectories of similar 
three-dimensional structure provides a robust technique of associating air pollutants with 
typical meteorological pathways,8,9 but remains limited in its ability to distinguish 
individual points along an atmospheric pathway defined by a cluster of back trajectories.  
 
The definition of an individual cluster of back trajectories in PATH analysis is dependent 
on a subjective choice of the “Radius of Proximity.”  This threshold defines the limiting 
difference between the three-dimensional coordinates of two back trajectories and 
determines if they are in the same cluster or different clusters.  Selection of a smaller 
radius of proximity, in effect, will split clusters into component sub-clusters.  Thus in the 
limiting case (radius of proximity = 0) the analysis reverts to a traditional trajectory 
analysis with each trajectory representing its own cluster.  In this sense, PATH analysis 
offers a trade-off between uncertainty and fine scale structure of a trajectory analysis.  By 
using a smaller radius of proximity – and thus a much larger number of clusters (100-200 
clusters representing the 10,000+ back trajectories for each site over the 5-year period) – 
we have applied the PATH techniques to develop relatively well resolved (spatially) 
trajectory clusters.  These have been weighted by pollution measurements and attributed 
to geographic areas.   
 
An independent method of associating emissions with downwind air quality impacts 
involves the use of chemical transport models, or source modeling, rather than the 
receptor based approaches used in trajectory analysis.  Here we use a large database of 
back trajectories and corresponding air pollution measurements to develop metrics related 
to Wishinski and Poirot’s “incremental probability”10 which is reflective of the increase 
in probability – relative to the everyday probability – of a geographic region being 
associated with a predominant meteorological pathway for sulfate transport (as opposed 
to a source region itself).  Here we use these metrics in two ways.  First, a sulfate-
weighted probability is used to apportion observed sulfate as an independent check on 
source modeling results that have identified state-specific contributions of elevated point 
emission sources to sulfate formation.  The weighted probability developed here is then 
compared to other incremental probability metrics to better understand how this 
technique compares to more traditional methods. 
 
 
METHODS 
 
The Hybrid Single Particle Lagrangian Intregrated Trajectory (HY-SPLIT) model11,12 
was used to calculate back trajectories for 17 sites in the Northeast U.S.  The locations 
correspond to Class I areas subject to the RHR as well as several sites where potential 
nonattainment issues with the PM2.5 NAAQS warranted analysis.  Results are presented 



here for Acadia National Park, Maine, Lye Brook Wilderness Area, Vermont, and 
Brigantine Wilderness Area, New Jersey. 
 
Back trajectories were calculated eight times per day for starting heights of 200, 500 and 
1000m above ground level using two different sets of meteorological wind fields for the 
five year period 1998-2002. NOAA ARL archives analyzed meteorological products for 
use with the HYSPLIT model including the Eta Data Assimilation System (EDAS) wind 
fields, which cover North America with an 80 km spatial resolution and are based on 3-
hourly variational analyses as well as wind fields based on the final run of the Global 
Data Assimilation System (FNL) which has 6-hourly temporal and 190 km horizontal 
resolution over the entire globe.13   
 
Clusters were calculated using the PATH approach.6  Trajectories are grouped based on 
Euclidean distance between three-dimensional normalized coordinates of the respective 
trajectories.  Clusters are formed by finding the “central” trajectory which has the greatest 
number of neighboring trajectories within a subjectively selected “radius of proximity.” 
There is a trade-off between the “resolution” of various modes of atmospheric transport 
identified by PATH and the number of clusters.  While using a small radius of proximity 
as the threshold criterion for membership in a cluster results in generally more defined 
clusters that are easily identifiable with a specific class of meteorological transport (e.g. 
fast flow from the Northwest, shallow coastal flow, etc.), it also results in a large number 
of clusters at each site.   
 
In order to better define specific meteorological pathways that might be associated with 
pollutant transport, we used a radius of proximity of 6 (this is a unit-less value since the 
coordinates have all been normalized prior to clustering).  This typically resulted in 100-
200 clusters at each site. Figure 1 shows typical meteorological patterns among the most 
frequent clusters calculated for Brigantine Wilderness Area, New Jersey.  Results are 
plotted as a residence-time density for each cluster, which is a measure of the total time 
spent in a particular grid cell.  Clusters in the figure have been associated with specific 
atmospheric “modes” or meteorological patterns that are commonly observed at multiple 
sites.  The modes pictured correspond to Northwest Fast flow (NWF), Southwest Interior 
(SWI), Southwest Coastal (SWC), Southeast Maritime (SEM), Upper Midwest (UMW), 
and Northerly flow (N). 
 
Trajectories were then associated with corresponding monitoring data measured as close 
in time as possible to the “start” time of the back trajectory calculation.  Associations 
were made for PM2.5, Ozone, and all PM components routinely measured as part of the 
IMPROVE program, although results are presented here only for 24-hr integrated sulfate 
ion mass.   
 
 
 
 
 
 



 
 
Figure 1.  Residence-time density for 6 back trajectory clusters observed at Brigantine 
Wilderness Area, New Jersey between 1998 and 2002. 

 
IDENTIFYING INCREASED PROBABILITY OF SULFATE 
TRANSPORT PATHWAYS 
 
The residence-time densities and corresponding sulfate measurements can be combined 
in a number of ways to yield various metrics which may help identify specific 
meteorological pathways that are more likely than others to contribute to sulfate transport 
to a specific receptor site.   
 
One method begins with residence-time probabilities, which are a measure of the time 
spent in a specific grid cell relative to the total time spent in any grid cell.14  When 
calculated for all trajectories considered in an analysis, this defines the everyday 
probability as shown in Equation 1.  
 
Equation 1. Everyday Residence-time Probability 
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These residence time probabilities can be calculated for any subset of trajectories, and 
have been traditionally applied to a subset corresponding to high concentrations of 
pollutants resulting in a high-day probability as shown in Equation 2.  
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Equation 2. High Day Residence-time Probability 
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The difference between these two sets of probabilities has been referred to as the 
incremental probability and identifies areas where the probability of poor air quality is 
greater than the average probability associated with typical meteorological patterns (see 
equation 3). 
 
Equation 3. Incremental Probability 
IP = EPHP −  
 
In order to take advantage of the PATH analysis, two new metrics have been derived 
using the concept of incremental probability to investigate meteorological pathways that 
influence sulfate transport.  First, a clustered incremental probability is defined by 
subtracting the everyday probability from a sum of the worst day clusters.  Rather than 
choosing a subset of the trajectories, we have selected a subset of the clusters which are 
chosen based on their associated average sulfate concentrations.  Clusters are ranked in 
order of their associated average sulfate value and clusters are summed until 20 percent 
of the overall trajectory population are included.  Those clusters define the worst day 
conditions and their sum represents the worst day probability which can be applied in a 
modified incremental probability as shown in equation 4. 
 
Equation 4. Clustered Incremental Probability 
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Finally, we present the weighted-cluster probability.  Each PATH-derived cluster’s 
residence-time probability is weighted by the average sulfate value for any measurements 
corresponding to a trajectory which is a member of that cluster.  The weighted residence-
time probability is summed over all clusters calculated for a site.  The everyday 
probability is subtracted from the sum of weighted-cluster probabilities to identify areas 
of increased (or in the case of negative values, decreased) probability of being associated 
with a meteorological pathway for pollutant transport. Equation 5 presents the weighted-
cluster probability. 
 
 
 
 
 
 



Equation 5. Weighted-Cluster Probability 
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Here, (C )i represents the average sulfate value for all trajectories within cluster i which 
had an associated SO4

2- measurement (roughly 25-30 percent, given 1-in-3 day sampling 
schedules).   By weighting the residence-time probability for cluster i by this quantity, we 
are implicitly assuming that similar trajectories (i.e. traversing similar source regions 
under similar meteorological conditions) will have similar resulting ambient 
concentrations at the receptor.  The quantity (C ) represents the average value for sulfate 
measurements associated with trajectories in any of the clusters and acts to normalize the 
sum of the residence-time probabilities. 
  
Figures 2 through 4 show the results of the weighted-cluster probability calculation for 
sulfate at Acadia National Park, Maine, Brigantine Wilderness Area, New Jersey and Lye 
Brook Wilderness Area, Vermont. 
 
Figure 2. Areas of increased (yellow/red) or decreased (cyan/blue) probability of being 
associated with sulfate transport to Acadia National Park, Maine. 

 
 



Figure 3. Areas of increased (yellow/red) or decreased (cyan/blue) probability of being 
associated with sulfate transport to Lye Brook Wilderness Area, Vermont.  

Figure 4. Areas of increased (yellow/red) or decreased (cyan/blue) probability of being 
associated with sulfate transport to Brigantine Wilderness Area, New Jersey. 

 
By averaging the weighted-cluster probability fields across sites, Figure 5 demonstrates 
that the regions most likely to be associated with sulfate transport to Lye Brook, Acadia 
and Brigantine include Virginia, Maryland and Eastern Pennsylvania followed by the 
Ohio River Valley. 
 
 
 



Figure 5. weighted-cluster probability showing areas of increased (yellow/red) or 
decreased (cyan/blue) probability of being associated with sulfate transport to Acadia, 
Brigantine, and Lye Brook. 

 
In trying to interpret this new metric, it is useful to contrast these results against the 
alternative formulations in order to better understand how the clusters influence the 
results.  Figures 6 shows the three site average probability fields for the incremental 
probability as well as the clustered incremental probability, as defined in equations 3 and 
4 above, for the twenty percent worst sulfate values.   
 
Figure 6. Areas of increased (yellow/red) or decreased (cyan/blue) probability of being 
associated with sulfate transport to Acadia, Brigantine, and Lye Brook as measured by 
incremental probability (left) and clustered incremental probability (right).   

One obvious difference between the metrics shown in figures 5 and 6 is that the 
incremental probability has values closer to zero than either of the other two metrics 
which may be a function of the sample size for each analysis.  Whereas the cluster 
techniques use all trajectories in the sample, the incremental probability is limited to the 

  



trajectories for which a corresponding measurement exists and thus uses only about 25-30 
percent of the trajectories.  From a qualitative perspective, the three metrics are quite 
similar showing significant sulfate transport (on an annual average basis) along the 
Eastern corridor from Virginia and North Carolina up through Maryland and Eastern 
Pennsylvania.  A second area of influence along the Ohio River valley between Ohio, 
Pennsylvania and West Virginia may play a role as well. 
 
As noted previously, the PATH-derived clusters and associated techniques may not be 
appropriate for distinguishing source regions from regions associated with sulfate 
transport (i.e. the integrated path from source to receptor).  This may explain why the 
cluster-based techniques show greater influence in the region between Albany, NY and 
Long Island, NY which is closer to the Lye Brook and Brigantine source regions.  
However, it is difficult to discern given the difference in statistical samples between the 
techniques as discussed above. 
 
 
COMPARISON OF SOURCE AND RECEPTOR TECHNIQUES FOR SULFATE 
CONTRIBUTION 
 
Trajectory cluster techniques were used to provide an independent confirmation of 
REMSAD (v. 7.10 with source tagging) calculated contributions of various source 
regions to ambient concentration of sulfate ion at receptor sites in the Northeast U.S.   
 
1996 meteorology and a 2001 “proxy” inventory developed by the U.S. EPA for analysis 
of the 2003 Clear Skies Act were used to generate annual average contributions from 
tagged elevated point source emissions of SO2 in 31 eastern states.   The elevated point 
source emissions were grouped by state allowing for the individual contribution from 
each state’s elevated point sources to be individually tracked in the model.  The picture of 
each state’s total contribution to PM2.5 is incomplete because area and mobile sources of 
SO2 were not included in these tags and other components of fine particulate were not 
included.  However, this does give a good sense of the relative ranking of various states 
point sources (>80% of the national SO2 inventory).  State-specific contributions to 
annual average sulfate concentrations are then ranked and grouped into quintiles. 
 
Residence-times for the PATH derived clusters were then broken down by state to 
calculate the percent of each site’s weighted-cluster probabilities that lay within a specific 
state’s boundaries.  That fraction gives a measure of each state’s sulfate-weighted 
residence time that is attributable to a given sites transport.  It is important to note that the 
average sulfate value derived for each cluster is based on only those members of the 
cluster for which there is a corresponding measurement.  Given the 1-in-3 day schedule 
of the IMPROVE program, this means that the average is based on approximately one 
third of the population within the cluster.  Here we assume that the distribution of 
measurement days is random with respect to actual concentrations and that no bias is 
incurred.   
 



The result provides an indication of the state-specific contribution to the sulfate weighted 
residence-time for the most frequently occurring meteorological patterns. These 
contributions are ranked and grouped into quintiles similar to the REMSAD results. 
 
Figures 7 through 9 show the results for the two techniques with the states shaded black 
representing the top quintile contributor, dark gray representing the second quintile, 
medium gray representing the middle quintile, light gray representing the fourth quintile 
and off-white for the bottom quintile.  White states where not included in the REMSAD 
tagging scheme and thus were not included in the ranking schemes. 
 
Figure 7. Ranked contributions of states to ambient sulfate concentration at Acadia 
National Park, Maine derived by REMSAD with source tagging (left) and weighted-
cluster probability derived by PATH (right). 

 
Figure 8. Ranked contributions of states to ambient sulfate concentration at Lye Brook 
Wilderness Area, Vermont derived by REMSAD with source tagging (left) and trajectory 
clusters derived by PATH (right). 

 

 



Figure 9. Ranked contributions of states to ambient sulfate concentration at Brigantine 
Wilderness Area, New Jersey derived by REMSAD with source tagging (left) and 
trajectory clusters derived by PATH (right). 

 
In comparing these techniques, we recognize that, given the nature of PATH derived 
clusters, this approach is likely to give undue weight to nearby geographical areas simply 
due to the inability of the technique to distinguish contributions from specific locations 
along an integrated trajectory path.  In fact, this is borne out in the results which show a 
bias toward contribution from nearby states relative to the REMSAD calculated sulfate 
contributions.   
 
Nonetheless, given the similar patterns of contribution and the completely independent 
methodology for deriving these results, they do appear to provide an important check on 
source-based contribution techniques. 
 
CONCLUSIONS 
 
A large database of back trajectories and corresponding air pollution measurements have 
been used with trajectory cluster analysis techniques to apportion observed sulfate mass 
concentrations as an independent check on source modeling results.  Both techniques 
have identified state-specific contributions of SO2 emission sources to sulfate formation.   
Results indicate that cluster-based trajectory techniques can provide a semi-quantitative 
check on chemical transport model results, although greater effort must be taken to 
develop a tagged model run that incorporates all emission sources of SO2 in order to 
directly compare with receptor approaches. 
 
Clusters have also been used here to develop metrics related to Wishinski and Poirot’s 
“incremental probability”10 which provides the relative increase in probability of a 
geographic region being associated with a predominant meteorological pathway 
associated with pollutant transport (as opposed to a source region itself). 
 
This analysis demonstrates a potentially novel way of identifying regions that play a role 
in pollutant transport (as opposed to regions which may host source emissions).  

 



Combined with meteorological information and source apportionment model results, the 
approach may yield a more comprehensive picture of source emissions and the 
circumstances under which they are transported to specific receptor sites. 
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