
Cornell: K. Max Zhang, Bo Yang, Geng Chen, and Jiajun Gu
NESCAUM: George Allen
ARSC: James Schwab
NYSDEC: Dirk Felton and Oliver Rattigan
Acknowledgments

• Guillermo Metz at Tompkins County Cooperative Extension
• Pat Fritz, Tom Wainman and Judy Abbott at DOH
• NYSERDA (PM: Ellen Burkhard) for funding support
City of Ithaca, NY
Woodsmoke as an *urban* problem
Policy-relevant research questions

- Impact assessment
 - How localized is the local air pollution problem?
- Regulations
 - Local ordinances rarely exist
 - Basis: Concentration or Emissions?
 - Enforcement mechanism inadequate
- Emission Inventory
 - Heavily relying on survey data.
 - Lack of alternative surrogates
How do we respond to woodsmoke complaints?

Enforcement Kit
- Near-source measurement
- Data processing
- Estimating emission rates
Policy-relevant research questions

• Impact assessment
 – How localized is the local air pollution problem?

• Regulations
 – Local ordinances rarely exist
 – Basis: Concentration or Emissions?
 – Enforcement mechanism inadequate

• Emission Inventory
 – Heavily relying on survey data.
 – Lack of alternative surrogates

• Conducting near-source woodsmoke monitoring

• Developing source estimation techniques

• Evaluating a potential woodsmoke emissions surrogate
Hybrid mobile and fixed site monitoring in Ithaca

- pDR-1500: PM$_{2.5}$
- AE-33: seven-wavelength Aethalometer™ (370 nm, 470 nm, 520 nm, 590 nm, 660 nm, 880 nm, and 950 nm)
 - DC = BC (370) – BC (880) as a woodsmoke marker
- GMP343: CO$_2$
- Mobile platform: a hybrid electric vehicle (HEV), probes mounted one feet above the sunroof of the HEV
- Fixed site monitoring at the property line for reoccurring hotspots
- A total of 20 mobile monitoring runs and fixed site monitoring were done on the following dates (low temperature and low wind speed):
 - December: 16, 20
 - January: 5, 6, 7, 22-AM, 22-PM, 24, 27
 - February: 9, 12, 14, 18, 26
 - March: 3, 4, 5, 6, 19, and 20
Diesel PM: No enhancement for UV absorption
Woodsmoke PM: Strong enhancement at shorter wavelength
DC = BC (370) – BC (880) as a woodsmoke marker
Examples of mobile run results

Ithaca 06Jan16 Trip 1 Red Circle is pDR PM2.5; Green is GPS Track When PM=0

Ithaca 06Jan16 Trip 1 Woodsmoke Red Circle is Delta-C; Green is GPS Track When DC=0
Near-source monitoring
Near-source monitoring

Fixed site: Source 1

a) Ithaca, NY
 Source 1, Jan 27, 2016
 \[y = 3.00x + 3.82 \]
 \[r^2 = 0.878 \]

b) Ithaca, NY
 Source 1, Feb 9, 2016
 \[y = 7.97x - 0.55 \]
 \[r^2 = 0.941 \]

c) Ithaca, NY
 Source 1, Feb 12, 2016
 \[y = 9.27x + 1.80 \]
 \[r = 0.761 \]

 Condition 1
 \[y = 6.41x + 3.14 \]
 \[r = 0.500 \]

 Condition 2

d) Ithaca, NY
 Source 1, Feb 18, 2016
 \[y = 9.59x - 3.38 \]
 \[r^2 = 0.616 \]

DC (µg m⁻³) vs. PM₂.₅ (µg m⁻³)
Different PM vs. DC relationships indicate different combustion conditions
Approaches adopted in the literature

- **Bayesian Inference**
- Variational Data Assimilation
 - Tangent Linear Model and its Adjoint
 - Direct differentiation
 - Surrogate-assisted optimization
-

Source Estimation

Dispersion Modeling

Source Estimation
Testbed for woodsmoke source estimation methods

- Wind tunnel experiment conducted by EPA
- Controlled environment for testing different methods
- Foundation for source estimation based on real-world woodsmoke data
- Low momentum point source with low stack
 - Mimicking a residential woodsmoke source
- Various conditions
 - Different building aspect ratios and wind angles
Model 1: **Gaussian Plume (GP) Equation** Use the Dynamically Dimensioned Search (DDS) algorithm to fit the equation with measurements to determine the parameters Q (emission rate), σ_y and σ_z (vertical and lateral dispersion coefficients), h_{eff} (effective height) and δ_y (lateral offset).

Model 2: **AERMOD** Regulatory dispersion model by EPA, equipped with PRIME downwash mechanism. Use the direct differentiation to find best Q to fit the observation data.
Method 3: Bayesian Inference

Bayes’ Formula:

\[P(Q|C) \sim P(C|Q)P(Q) \]

Likelihood Function

Posterior

Prior

Recall that: \(C_i = C_{FM,i} + \varepsilon \), where \(\varepsilon \sim N(\mu, \sigma^2) \)

Then the likelihood function is:

\[
P(C|Q) = \prod_i P(C_i|Q)\]

where:

\[
P(C_i|Q) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(C_i-C_{FW,i}(Q)-\mu)^2}{2\sigma^2} \right]
\]
Woodsmoke surrogate for emission inventory

• Motivation
 – Currently, wood combustion emissions in the National Emission Inventory (NEI) are estimated based on survey data.
 – Extensive surveys on residential wood combustion (RWC) are difficult to conduct; current RWC emissions are likely to be under-estimated.

• Opportunities
 – A growing number of routine air monitoring sites include dual-wavelength black carbon (BC) instruments, in addition to those for criteria pollutants
 – *Rochester, NY* (2008-present)
 – *Springfield, MA* (2006-present)
 – ...
Proposed woodsmoke surrogate

- **DC** = BC370 - BC880,
 - which has been shown to be a good marker for woodsmoke concentration.
- **BC’** = BC880 – DC*WS_BCfac
 - Representing “non-woodsmoke” BC.
 - WS_BCfac is set to 0.1
- **DC/BC’** is proposed as a surrogate for woodsmoke emissions
 - BC’ act as a dilution indictor to normalize DC, transforming from concentration to emission.
Policy Implications

• Compact Growth vs. RWC air pollution
 – Unintended consequence?
• Human behaviors
 – In terms of mitigating excessive emissions from RWC, our study suggests that responsible wood burning practice is equally important as upgrading wood stoves.
• Regulations
 – Science-based local ordinances on woodsmoke are needed
 – Effective enforcement of those ordinances is necessary
• Outreach and Education
 – Cooperative extension as trusted community partner
Some thoughts on how to address RWC problems